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Abstract − Numerical computer simulations using the 
NEC Method of Moments (MoM) code were performed 
on wire grid models of resonant cavities in order to 
study how well conductive structures and their surface 
impedances can be modeled by wire meshes. The 
resonant cavity quality factor, or Q, was examined due 
to its high sensitivity to surface impedance. Several 
half-wave coaxial cavities were simulated using various 
mesh element sizes.  The cavities’ outer conductor 
radius was varied to obtain different geometries.  The 
quality factor Q was determined from the simulated 
input impedance spectra. The wire grid model results 
were compared to well known theoretical and 
experiment results. Qualitative agreement between 
simulation, theoretical, and experimental results was 
achieved for fixed mesh parameters, giving confidence 
in comparative simulation using the same wire grid 
meshing parameters.  Quantitative agreement of 
simulation results was achieved through repeated 
simulation with varying mesh element lengths and 
extrapolating the simulation results to a conceptual 
mesh element length of zero. This shows that 
simulations to determine quantities sensitive to surface 
impedances can be successfully performed with codes 
such as NEC. 
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extrapolation, and surface impedance. 
 

I. INTRODUCTION 
 
A resonant cavity’s quality factor, Q, is highly 
dependent on the surface impedance, Rs, of the cavity’s 
interior conducting surface. Numerical simulation of 
well understood cavities can serve to investigate 
numerical techniques employed to model conductive 
surfaces and their impedances.  Once shortcomings of a 
particular numerical modeling technique are 
determined, they can often be compensated for and 
hence result in more accurate simulation results. These 
techniques can then be applied with confidence to the 
simulation of more complicated resonant structures for 

which analytical solutions are not readily available.  In 
this paper, the well known quality factor of cylindrical 
half-wave coaxial cavity resonators was investigated, to 
determine how well wire grid models can represent 
conductor surfaces in resonant cavity structures. 
 

II.   THEORETICAL BACKGROUND ON 
QUALITY FACTOR OF HALF-WAVE 

RESONANT COAXIAL CAVITIES 
 
A basic definition of quality factor, Q, for a resonant 
structure is given in equation                         (1). For the 
case of an electromagnetic half-wave coaxial cavity 
resonator, the energy stored, ES, can be calculated 
through equation (2, the integral over the cavity 
volume, V, of the magnetic-field intensity, H. The 
energy dissipated per cycle, ED, is given by equation        
(3), the surface integral of the ohmic losses due to the 
surface current density Js, over the interior cavity 
surface area, A.  The Q of a resonant cavity is often 
normalized with respect to the wavelength, λ, and 
conductor skin depth, δ, as shown in equation                 
(4), and is then referred to as the cavity form factor [1], 
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Since the fields in a half-wave long resonant cavity are 
standing transverse electromagnetic (TEM) waves, the 
time average magnetic-field intensity, H, which is 
strictly in the φ-direction for this mode, is known to be 
of the form given in equation           (5) where C is a 
constant and z0 is the length of the cavity as shown in 
Fig. 1. 
 
 

 

Fig. 1.  Coaxial cavity geometry with inner radius, a, 
outer radius, b, and length, z0. 
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Substituting H into equation                 (4) and 
evaluating, provides results shown in equation         (6) 
for the form factor of a half-wave coaxial cavity [1].  
Note that this quality factor is the unloaded quality 
factor, Qu, which does not include losses due to a 
coupling structure or associated source impedance.  If 
simulations of wire grid representations of such coaxial 
cavities result in quality factors predicted by theory, 
then the simulation technique must properly model 
conductive structures and their surface impedance 
losses with wire grids. 
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III. BACKGROUND ON CONDUCTIVE 
SURFACE MODELING BY WIRE GRIDS 

 
Richmond pioneered modeling of conductive 
geometries using wire grid representations and this 
technique has become accepted radiation and scattering 
problems [2].  Rules of thumb have been developed for 
modeling conductive structures.  A usual requirement 
for the wire grid models is that the grid element size be 
“small” with respect to a wavelength.  Another 
commonly used rule is “the equal surface area rule”, 
where the total surface area of the cylindrical wires 
comprising the grid is made to match the surface area of 
the conductive object being modeled [3-5].  It has been 
found that a rectangular wire grid, with the grid axes 
aligned to electromagnetic polarization, generally gives 
more accurate simulation results than other types of 
grids, including triangular grids [5]. A more elaborated 
set of rules for wire grid simulation of surfaces using 
the Numerical Electromagnetics Code (NEC) [6], a 
popular and well tested method of moments code, is 
discussed in Truman and Kubina [3]. However, these 
rules are only guidelines. According to Moore and 
Pizer, some simulations require the wire grid surface 
area to be up to five times larger than the object’s actual 
surface area in order to match experimental results, so 
surface impedance seems to not be modeled well in 
these wire grid simulations [6]. 
 

IV. IMPLEMENTATION OF WIRE GRID 
MODELS FOR COAXIAL CAVITIES  

 
To facilitate the construction of various simulation wire 
grid geometries for this study’s simulations, a 
commercial computer aided design (CAD) program was 
employed. Each resulting cavity model mesh was 
exported to a text file in the open-Wavefront OBJ 
format [8]. This format specifies the mesh as a series of 
numbered vertices followed by a series of planar faces 
or patches with the vertices at the corners of these 
patches.  This text file was then processed into a format 
compatible with NEC through custom written software.  
The process generated a wire segment for each edge of 
each mesh surface patch, while avoiding duplication 
amongst adjacent patches. The equal area rule was 
applied, in which the cylindrical surface area of a wire 
segment was chosen to be the average of the surface 
areas of the quadrilateral grid patches on either side of 
the wire. The wire mesh generated used equally sized, 
primarily square patches, and as such, polarization 
alignment of the mesh was not completely achieved at 
the shorted ends of the resonator. The equal area rule 
resulted in a total surface area of the grid elements of 
approximately twice the modeled conductor area.   
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V. MODEL FIELD EXCITATION AND 

SIMULATION 
 
A small rectangular loop near the base of the cavity 
wire grid model provided the excitation to the model.  
This loop was added by manually editing the NEC 
geometry input file. The input files were then simulated 
using NEC2++ ver. 1.2.3, a PC implementation of NEC 
in the C++ programming language [9].  Approximate 
resonance peaks were found through iterative frequency 
sweeps.  The coupling loop area and the loop’s position 
were adjusted so that the simulation achieved 
reasonable coupling and the cavity Q could be reliably 
determined.  Note that the effect of the coupling 
structure on Q was later removed from the data, and 
attention was focused on the unloaded quality factor, 
independent of the coupling structure.    
A series of half-wave coaxial cavities were modeled to 
obtain the simulated impedance spectra. The inner 
conductor radius, a, and the cavity length, z, were held 
fixed arbitrarily, at 1 m and 12 m, respectively. The 
outer radius b was allowed to vary from 2 m to 6 m in 
increments of 0.5 m. Larger outer radii were not 
simulated, as 6 m is close to the upper limit for the TEM 
resonance mode [10]. Some sample cavity models are 
shown in Fig. 2.   
 

 
Fig. 2.  Sample wire grid cavity models, a = 1 m, b = 2 
m to 6 m, and z = 12 m. 

 

VI. THEORETICAL, SIMULATION, AND 
EXPERIMENTAL RESULTS 

 
Once simulations were complete, the simulated 
impedance spectra were used to determine the 
corresponding unloaded quality factors.  The impedance 
spectra were transformed to reflection coefficients, as 
they would have been measured with a 50 Ω network 
analyzer. The loaded (by coupling loop) and unloaded 
quality factors were then determined by the half power 
frequency span about the resonance frequency.  This 
was performed on the Smith chart, where the locus of 
the impedance is known to form a circle in the vicinity 
of the resonance frequency. A freely available piece of 
software readily performs these calculations from 

network the analyzer data. For references on the 
software and other methods of determining quality 
factors from impedance data, refer to Ginzton, Kaifez, 
and Hwan [11][13]. The resulting unloaded quality 
factors for the half-wave cavities were then normalized 
with respect to the skin depth, δ, and the wavelength, λ, 
and compared to theoretically calculated values, as 
given in equation         (6). Several mesh edge lengths 
were simulated for each cavity. The edge length data 
was then extrapolated to a conceptual length of zero 
through a quadratic least squares fit of Qu. For 
comparison purpose, experimental cavities (Fig. 3) with 
correspondingly scaled dimensions were constructed 
from brass and measured on a network analyzer. The 
measured data were processed identically to the 
simulated data to determine the normalized cavity form 
factors. The results are plotted in Fig. 4. 
 

 
 

Fig. 3.  Experimental cavity models, a = 1 in, b = 2 in to 
6 in, and z = 12 in. 

 
VII. DISCUSSION AND CONCLUSIONS 

 
As shown in Fig. 4, mesh size has a considerable effect 
on the magnitude of the simulated form factors.  
However, the general shape of the simulated curves for 
each mesh element size agrees with theory and 
experiment.  A large mesh size seems to result in erratic 
simulation results especially around b/a = 5.5 m, which 
is not reflected in the experimental data. These erratic 
results must therefore be numerical instabilities rather 
than excitation of higher resonance modes.  As 
expected, finer mesh sizes result in more accurate and 
better behaved simulation results, but at the cost of 
additional computation time. The simulation error in 
absolute magnitude can be corrected by artificially 
shifting up the curves, which is equivalent to decreasing 
the conductivity of the wire grid elements.  The required 
adjustments in conductivity for the  0.5 m and 0.375 m 
grids, is about 1/5 and 1/4, respectively, and seems to 
correlate well with Moore and Pizer’s suggestion of a 
simulated area up to five times the actual area [6].  
Alternatively, the simulation results for each b/a can be 
extrapolated to a conceptual mesh element length of 
zero. This then results in excellent agreement between 
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Fig. 4.  Comparison of theoretical, simulated and experimental form factors. 

 
experiment, theory and simulation. In practice, 
experimental data is expected to be slightly below 
theoretical, due to surface imperfections that lower the 
overall surface conductivity. Despite modeling errors, 
such as low level radiation leakage from meshed 
structures representing closed volumes and inaccurate 
absolute surface impedance modeling at larger mesh 
element sizes, trends in the simulation results are 
retained. This allows for meaningful comparison of 
other resonant geometries via simulation by using wire 
grid meshes with identical mesh parameters. As an 
alternative, the mesh element size can be varied and the 
results extrapolated to the limiting case of a zero length 
edge element. This will give quantitatively simulation 
results with much better accuracy. Wire grid modeling 
can be a valuable tool, not just for radiation and 
scattering problems, but even for problems that show 
sensitivity to surface impedance. 
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