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Abstract − The dispersive behavior of a waveguide 
loaded with a metamaterial slab is investigated by means 
of common mathematical tools demonstrating the 
existence of a superluminal propagation region. More 
specifically, MATLAB has been used to investigate the 
influence of the propagating pulse shape on the 
possibility to achieve a propagation characterized by a 
negative group delay. Results achieved in this way have 
also been validated by means of a Finite Difference Time 
Domain code.  
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I. INTRODUCTION 
 

Metamaterials (MM) are an appealing new frontier 
of electromagnetic research, attractive for a wide range of 
applications. More specifically, media with negative 
values of the constitutive parameters (ε<0, µ<0), firstly 
investigated by Veselago [1], have recently attracted a 
great interest in the scientific community. Among these, 
the following classes of materials can be identified:  
- Epsilon-Negative (ENG): media with a negative 

electrical permittivity and a positive magnetic 
permeability; 

- Mu-Negative (MNG): media with a positive electrical 
permittivity and a negative magnetic permeability; 

- Double Negative (DNG): media with both the electrical 
permittivity and the magnetic permeability less than 
zero (conversely, conventional media with positive 
values of these parameters are defined Double Positive 
-DPS). 

In the last years, theoretical and experimental studies 
have demonstrated that the unusual dispersion 
characteristics of these media induce interesting 
phenomena, such as: reversed refraction, reversed 
Doppler effect, backward or superluminal propagation [1-
8].  

In this paper we focus on the possibility to observe 
the superluminal propagation phenomenon in these 
artificial structures; specifically we investigate the 
dispersive behavior of a MM slab-loaded waveguide 
(WG) [6-8] demonstrating the existence of a negative 
group velocity region. 

 Furthermore, two useful strategies of analysis are 
presented: a numerical method and an approximated 
analytical approach.  

It is proved that a useful preliminary analysis can be 
easily performed by means of common mathematical 
tools such as MATLAB [8]. It is also demonstrated that 
by using the effective medium theory a more detailed 
analysis can be approached in an efficient way by means 
of a Finite Difference Time Domain (FDTD) [9] code 
based on the Auxiliaries Differential Equations (ADE) 
method to deal with dispersive media. 

Both approaches have been used to investigate the 
influence of the propagating pulse shape on the Negative 
Group Velocity (NGV) phenomenon. 

The paper is structured as follows: first, the 
superluminal propagation phenomenon is briefly 
introduced in section II, and then the dispersion 
characteristic of a WG loaded by a MM-slab is given in 
section III. 

Later on sections IV and V describe the analytical 
approach and the FDTD code here proposed, whilst in 
section VI we report the results obtained for the 
propagation of modulated signals in a MM-slab-loaded 
WG. Finally some conclusions are drawn in section VII.  

  
II. SUPERLUMINAL PROPAGATION  

 
For a small-bandwidth signal propagating in a 

medium characterized by an effective propagation 
constant γeff ( effeffeff jβαγ += ), many different kinds of 
velocity can be defined. To introduce them it can be 
useful to expand the phase propagation constant in a 
Taylor series, 
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where the angular frequency ω0 is the carrier frequency of 
the propagating signal, whose time characteristic can be 
written as, 
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Related to the zero- and first-order term of equation 

(1), we can introduce:  
− The phase velocity, which is the propagation velocity 

of the sinusoidal signal appearing in equation (2),  
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− The group velocity (vP), which is the velocity by 

which the A(t) peak travels, 
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The medium dispersion properties are related to the 

second-order term of equation (1), commonly known as 
‘second-order dispersion’: it is equal to zero for non-
dispersive media, whilst it is greater or less than zero 
respectively for a normal or an anomalous dispersion 
medium. 

The term ‘superluminal’ refers to propagation with 
values of vg /vp negative, or greater than the speed of light 
in vacuum (c). 

It is well known that in some media (a possible 
example being a hollow waveguide) vp can be 
superluminal; the phenomenon can be easily explained by 
considering that vp has not a physical meaning, indeed it 
represents the velocity of propagation of a perfectly 
monochromatic wave of light which is not a real entity.  

More surprising it appears the phenomenon of 
superluminal values of vg, due to the existence of media 
with anomalous dispersion regions. 

As observed by Sommerfeld and Brillouin [10], the 
misunderstanding lies in identifying the signal peak 
velocity with the carried information velocity, so that 
superluminal values of vg seem to be inconsistent with 
Einstein’s relativity theory. In [10], by considering a 
Lorentz medium, they showed that a relativistically 
causal propagation is exclusively connected to the 
velocity by which the signal switching-on instant travels 
(the so called front velocity) which must be limited 
exactly by c.  

These topics are still much debated. Sommerfeld’s 
reasoning has been confirmed by a large number of 
theoretical and experimental results demonstrating that 
the superluminal vg phenomenon can be observed in 

several artificial structures [3-5,11-13], such as the DNG 
medium made of alternating layers of wire arrays and 
Split Ring Resonators (SRRs) arrays (SRR-wire medium) 
[14]. In the following, it will be showed that similar 
observations can be developed for a waveguide loaded by 
a MM-slab and, in order to investigate how the 
propagating signal time shape acts on the superluminal 
propagation phenomenon, the results obtained for the 
propagation of amplitude modulated signals will be 
reported and discussed. 

 
III. DISPERSION ANALYSIS OF A WAVEGUIDE 

LOADED BY A MM SLAB 
 

A. The SRR Particle 
A typical Split Ring Resonator (SRR) is shown in 

Fig. 1; it consists of two concentric rings interrupted by a 
gap, and was firstly proposed by Pendry [15] as 
elementary building block of a medium with negative 
values of the magnetic permeability (MNG medium). The 
SRR is a strongly resonant structure, whose resonant 
behavior is excited by an external time-varying magnetic 
field perpendicular to the ring surface, inducing currents 
that produce a magnetic field that may either oppose or 
enhance the incident field, thus resulting in positive or 
negative effective permeability. 
 

 
(a)                                   (b) 

 

 
(c)  

 
Fig. 1. (a) The Split Ring Resonator particle. (b) The Split 
Ring Resonator magnetic effective relative permeability. 
(c) The analyzed structure: a waveguide loaded with a 
Mu-Negative-slab consisting of an array of spiral 
resonators on a dielectric substrate.  
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Nowadays this particle has been studied and 
experimentally characterized extensively in the literature, 
demonstrating that an array of SRRs on a dielectric 
substrate exhibits MNG behavior around the SRR’s 
resonant frequency. The corresponding effective 
magnetic permeability is given by [4, 16], 
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where Γm is the magnetic damping constant, whilst ωpm 
and ωom are respectively the SRR magnetic plasma and 
resonance frequencies. They determine the frequency 
range in which the SRR array behaves as an effective 
homogeneous (MNG) medium (see Fig. 1(b)). 

Furthermore, in order to simplify the design at high 
frequency or to enhance the SRR magnetic response, in 
the last years, several modified resonator structures have 
been proposed, such as: the single ring, the spiral 
resonator, etc. [17,18].  

 
B. SRR-Slab Loaded WG 

One of the more attractive applications for MNG 
media has been suggested in [6-7], where an array of 
SRRs on a dielectric substrate has been used as loading 
slab of a hollow metallic waveguide (WG) to achieve 
useful stop-band or pass-band behaviors [6-7] (see Fig. 
1(c)). 

The dispersion equation of the dominant TE10 WG 
mode becomes, 
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where β0 is the free-space phase propagation constant, ωc 
is the WG cutoff frequency; consequently, depending on 
the values assumed by the SRR parameters, a pass-
band/stop-band behavior can be generated below/above 
ωc.  

By using the effective refractive index of the MM-
loaded WG, introduced in equation (9), we have, 
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being τg/d the normalized group delay. 

Figure 2 compares the normalized phase propagation 
constant and group delay of the MM-loaded WG with 
those corresponding to the SRR-wire medium analyzed in 
[4] with ωpe=ωc and Γe=0 (the realistic values reported in 
[4] have been used for the SRR medium, whilst ωc has 
been fixed to 40 GHz which is the value assumed for ωpe 
in [4]): an anomalous dispersion region, characterized by 
simultaneously negative values of vg (Negative Group 
Velocity-NGV) and vp, can be noticed around the SRR 
resonant frequency. Furthermore, according to [6], a 
pass-band with backward propagation characteristic can 
be also observed below the WG cutoff frequency. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig.  2.  Comparison between the Split Ring Resonator-
wire medium analyzed in [4] and the waveguide loaded 
by a Mu-Negative (MNG) slab (fpm=23GHz, fom=21GHz, 
fc=40GHz). (a) Group delay calculated for d=1mm, (b) 
propagation constant, and (c) attenuation calculated for 
d=1mm. 
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IV. ANALYTICAL APPROACH 
 

The proposed approach refers to a MM-slab, 
characterized by an effective refractive index and phase 
propagation constant, 
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For a plane wave, with angular frequency ω0, 

impinging on the slab front-face with an angle θi, the slab 
transfer function is given by [4], 
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Being Tij and Rij, respectively the Fresnel’s 
transmission and reflection coefficients at the slab 
interface with respect to the surrounding medium (with a 
refractive index n1). 

In the case of a normal incidence (i.e., θi =0), we 
have, 
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We assume a linear polarization and an amplitude 
modulation for the incident field, so that in the time 
domain it can be expressed as in equation (2), where the 
time envelope, A(t), is assumed to be a slowly varying 
function. Employing Hd(ω), and assuming that φ(ω) can 
be expanded around ω0 as a Taylor series arrested to the 
second-order term, 
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The signal transmitted by the slab can be determined 
by using the approach proposed in [19]; indeed, by using 
the Direct/Inverse Fourier transformation (DFT/IFT) we 
have, 
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Being Eu(ω,ω0) the Electric Field Fourier Transform 
(FT). The main difference, with respect to the analysis 
performed in [19], is that, due to the resonant behavior of 
the MM effective magnetic permeability given in 
equation (5), in the case under analysis the hypothesis of 
transfer function with nearly constant amplitude is not 
applicable. 

Considering that the transfer function of a real slab 
must have a Hermitian symmetry, 
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By discretizing the input signal and substituting the 

FT/IFT with the Discrete Fourier Transform 
(DFT)/Inverse Discrete Fourier Transform (IDFT), we 
have, 
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where fc is the sampling frequency and Tc the sampling 
time (fc=1/Tc) which must be fixed according to 
Shannon’s theorem. The response to any input signal can 
be now calculated by using a common and efficient 
mathematical tool, such as, for instance, MATLAB [19]. 

In this way, the effect of the dispersive behavior of a 
MM on finite bandwidth signals can be easily evaluated. 
Figure 2(c) shows the amplitude of the transfer function 
corresponding to the SRR-loaded WG (the SRR and WG 
parameters are the same assumed in the previous section). 
We can see that the NGV region corresponds to an 
absolute minimum of Hd. 
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This is in agreement with the analysis developed in 
[20], demonstrating that any causal medium with a linear 
refractive index must exhibits superluminal propagation 
regions centered at the frequency corresponding to an 
absolute maximum of the medium absorption. 

In the following, equation (15) will be employed to 
study the propagation of amplitude-modulated signals in 
this anomalous dispersion region. 

 
V. THE FDTD CODE 

 
In order to validate the results obtained by using the 

analytical approach presented in the previous section we 
use a proprietary FDTD tool in a Total Field /Scattered 
Field (TF/SF) formulation using Mur’s II order boundary 
conditions [9]. The TF/SF formulation allows the 
evaluation of the slab response to a modulated signal in a 
1-D environment, reducing considerably the 
computational time. 

Furthermore, by modeling the MM-loaded WG as an 
effective homogeneous medium with a relative effective 
magnetic permeability given by equation (5) and a 
relative effective electric permittivity given by, 
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The analysis with the FDTD code has been 

approached in an efficient way by using the Auxiliary 
Differential Equation method to deal with time dispersion 
[9]. More specifically the following phasor polarization 
currents have been employed to simulate the propagation 
of a plane-wave electric field, with linear polarization, 
normally impinging on the MM-loaded waveguide, 
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The electric polarization current (Jp) given in 

equation (17) is related to the dispersion equation of the 
dominant TE10 WG mode (i.e., to effr ,ε ), whilst the 
magnetic polarization current (Mp) allows to account the 
SRR-slab (i.e., it is related to effr ,µ ). 

 
VI. RESULTS 

 
Referring to Fig 1(c), in this section we assume that a 

signal such that given in equation (2) is applied at the 
input port of a MM-slab loaded WG. By fixing the WG 
length equal to d, equation (15) and the FDTD code have 

been used to calculate the time-domain characteristic of 
the propagating signal at the output port. In the following 
we report some results obtained by assuming that the 
time envelope of the input signal is a real function. More 
specifically, the shapes of the propagating signal have 
been fixed in order to investigate the assertions made in 
[14], where the NGV phenomenon has been attributed to 
asymmetrical energy absorption from the propagating 
signal: Crisp pointed out that the attenuation experienced 
by a propagating pulse depends on the time derivative of 
its time envelope. Consequently, in the following, the 
case of signals with a trailing and leading portion 
characterized by an exponential, a sinusoidal and a 
constant time derivative have been considered (see Fig. 
3). Furthermore, as evident from Figs. 3 and 4, the 
simulated signals exhibit different types of 
discontinuities, allowing evaluating how the ‘well-
behaved’ property of the propagating pulse influences the 
NGV phenomenon. 

 

 
Fig. 3. Normalized first order time derivatives of the time 
envelope of the simulated signals. 
 

 
Fig. 4. Normalized second order time derivatives of the 
Gaussian and Raised Cosine function. 

 
 

A. Gaussian Pulse 
The propagation of a small bandwidth Gaussian 

Pulse (GP) in an NGV medium is a well known topic [11-
14, 21]. It has firstly theoretically investigated by Garrett 
and McCumber [21], which demonstrated that under 

 
 GP  

 
RC  

 
 GP  

 
RC  

 
TP  
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some easily verified hypotheses the GP propagates at 
superluminal group velocity preserving its shape; starting 
from Faxvog’s [11] results, the phenomenon has been 
confirmed by several experimental observations. 

Consequently, in order to validate both the analytical 
approach and the FDTD code presented in the previous 
sections, we start our analysis assuming that the input 
signal time envelope is a (GP) function, 
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The results obtained by solving equation (15) with 

MATLAB are coincident with those obtained by using the 
FDTD code; they are reported in Fig. 5. 

 

 
(a) 

 

 
(b) 

 

Fig. 5. Results obtained by using  equation (14) for the 
propagation of a Gaussian Pulse (GP) in a waveguide 
loaded with a Split Ring Resonator slab (fpm=23GHz, 
fom=21GHz, fc=40GHz): (a) GP characterized by σ=30ns, 
τ=0.16µs, (b) GP characterized by σ=1ns and τ=15ns. 

 
Figure 5(a) refers to a small-bandwidth GP (σ=30ns 

and τ=0.16µs) modulating a carrier signal at f0=21GHz. 
The solution time required on a Pentium 4-2.8 GHz with 
the MATLAB approach was equal to 27 seconds (s). 

As expected the pulse peak experiences a negative 
group delay during the propagation (i.e., the peak of the 
output pulse precedes that of the input pulse).  

With reference to an absorbing medium with a 
Lorentzian inhomogeneous line shape, a similar 
phenomenon has been attributed by Crisp to an energy 
absorption which, with respect to those corresponding to a 
constant amplitude light beam, is greater in the case of a 
rising amplitude (positive time derivative), and smaller in 
the case of  a decreasing amplitude (negative time 
derivative).  

In Fig. 5(b) the results are given for the same 
analysis obtained for a broadband GP (σ=1ns and τ=15ns, 
solution time on a Pentium 4-2.8 GHz equal to 25s). In 
this case our calculation predicts that the pulse peak 
travels at a positive group velocity. 

 
B. Raised Cosine 

The group velocity concept is related to the peak of 
the propagating pulse; consequently, in order to deeply 
investigate the NGV phenomenon, the case of a 
propagating signal with a not-defined amplitude peak has 
been also considered in our analysis. 

More specifically, we studied the propagation of a 
Raised Cosine (RC) signal, 
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From equation (19) it is evident that A(t) has a 

leading and trailing portion with a sinusoidal time 
derivative (see Fig. 3), and that a constant amplitude 
portion is also present in its time characteristic. 

As in the GP case, two RC signals have been 
simulated (referred in the following as RC1/2): RC1 is a 
small bandwidth signal, so that its frequency 
characteristic is within the anomalous dispersion region 
of the MM-loaded WG, whilst RC2 is a broadband 
signal: its spectrum has a significant amplitude in both 
regions of anomalous and normal dispersion 
corresponding to NGV and backward propagation. 

As noted from Figs. 6 and 7, where the results 
obtained with MATLAB are reported, in both cases the 
propagating signal experiences a strong distorsion: the 
signal energy concentrates at the switch-on/off instants 
and at the instants corresponding to the transition from 
the sinusoidal to the flat portion of the RC pulse. From 
Fig. 4 it is evident that these instants correspond to jump 
discontinuities for the second-order time derivative of the 
RC function. 
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(a) 

 

 
(b) 

 
Fig. 6. Results obtained for the propagation of a Raised 
Cosine function (ρ= 0.1, T=7.8ns, f0=21GHz) in the Split 
Ring Resonator-loaded waveguide (fpm=23GHz, 
fom=21GHz, fc=40GHz). (a) Reflected field calculated by 
using the ADE-FDTD-TF/SF code. (b) Time 
characteristic obtained with MATLAB for different 
values of d. 
 
 

 
 

Fig.  7.  Results obtained by using equation (14) for the 
propagation of a Raised Cosine (RC) function in the Split 
Ring Resonator loaded waveguide (fpm=23GHz, 
fom=21GHz, fc=40GHz). The RC parameters are: ρ=0.6, 
T=31.25ns, f0=21GHz. 
 

C. Triangular Pulse 
To conclude, we analyze the case of a triangular 

function as modulating signal, 
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From equation (20) we can see that in this case the 

leading and trailing portion exhibit a constant derivative 
respectively equal to -1/T and to 1/T (see Fig. 3). The 
results obtained for this broadband TP are given in Fig. 8, 
they are similar to the one obtained for the GP pulse: due 
to the asymmetric attenuation experienced by the TP 
spectrum amplitude (see Fig 8(a)), the output signal is 
distorted.  

 

 
(a) 

 

 
(b) 

 
Fig. 8. Results obtained for a Triangular Pulse 
characterized by T=0.3ns and f0=21GHz: (a) comparison 
between the spectrum amplitude of the input signal and 
those of the output signal; (b) time domain characteristics 
obtained with MATLAB for different values of d. 
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In Fig. 9 the results are given for a TP with T=100ns. 
We can see that, as in the small-bandwidth RC case, the 
signal experiences a strong distortion: the TP energy 
concentrates at the instants corresponding to a jump 
discontinuity for the first-order time derivative of the TP 
function. Furthermore, from Fig. 9(a), we can see that the 
attenuation experienced by the TP spectrum amplitude is 
strongly asymmetric. 

 

 
(a) 

 

 
(b) 

 
Fig. 9. Results obtained for a Triangular Pulse 
characterized by T=100ns and f0=21GHz: (a) comparison 
between the spectrum amplitude of the input signal and 
those of the output signal, (b) time domain characteristics 
obtained with MATLAB for d=3mm (the broken line is 
the time derivative of the input signal time envelope). 

 
VII. CONCLUSIONS 

 
In this paper, two strategies for the analysis of a 

waveguide loaded with a Mu-Negative material have 
been proposed: 
− An approximated analytical approach implemented 

with MATLAB: reported results demonstrate that it allows 
to immediately evaluate the effects of the dispersive 

behaviour of an effective homogeneous medium on a 
finite bandwidth propagating signal representing a useful 
strategy for the so called dispersion engineering; 
− An FDTD code: based on the effective medium 

theory and on the Auxiliary Differential Equations 
method, a very efficient formulation of the problem under 
analysis has been suggested. 

Both approaches have been used to investigate 
situations of superluminal propagation. More specifically, 
we firstly theoretically demonstrate the existence of an 
anomalous dispersion region in the waveguide dispersion 
characteristic, then, we analyze the effects of this 
negative velocity behavior on amplitude modulated 
signals. 

Three different time envelopes have been considered:  
− The well behaved Gaussian (GP) function; 
− The Raised Cosine (RC) function which presents 

jump discontinuities in the second order time 
derivative; 

− The Triangular (TP) function which presents jump 
discontinuities in the first order time derivative; 
In all cases a broadband and a small-bandwidth 

signal have been considered. As expected the small-
bandwidth GP experiences a negative group delay 
preserving its shape, whilst the RC and TP signal are 
strongly distorted after the propagation: the propagating 
signal energy concentrates at the instants corresponding 
to the jump discontinuities respectively in the second and 
first order time derivative. The phenomenon is due to the 
strongly asymmetric attenuation experienced by the 
spectrum amplitude of the propagating signals. The 
relevant consequence is that only the well behaved 
Gaussian Pulses, characterized by single-lobe spectrum 
amplitude, experience a negative group delay, preserving 
its shape during the propagation. 
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