
Abstract—An object-oriented implementation of a
finite-volume time-domain (FVTD) engine for solving
Maxwell’s equations is presented. The relevant aspects
of the FVTD method are discussed from an object-
oriented perspective and details of the object classes are
given. Computational results obtained using the FVTD
engine for solving Maxwell’s Equations on unstructured
grids are also shown. The engine implements both
MUSCL and polynomial interpolation methods to
approximate the fluxes at the cell boundaries up to third-
order accuracy. In addition, the engine has the capability
of using a number of time-integration schemes. Results
are presented for the transient scattering from a PEC
sphere and a lossy dielectric cube. For the case of the
sphere, almost perfect agreement with the analytic
solution in the time-domain is achieved. The number of
cells required as compared to FDTD is substantially
reduced.

Keywords—Finite-volume time-domain, FVTD,
Maxwell’s Equations, object-oriented design.

I. INTRODUCTION

The finite-difference time-domain (FDTD)
algorithm is probably the most popular computational
electromagnetics (CEM) technique in use today. The two
main drawbacks of the standard FDTD method are that
curved geometries must be approximated by “stair-
stepping” the boundaries and that the electromagnetic
field components are interlaced in space and time. These
drawbacks require that a fine grid be used in order to
resolve curved boundaries which increases the required
computational resources. There have been several

successful investigations on modifying the method for
non-rectangular boundaries but these are difficult to
implement and use [1].

In recent years, the computational electromagnetic
community has taken interest in the finite-volume time-
domain (FVTD) algorithm as an alternative or
companion to the simple and powerful FDTD algorithm
for solving Maxwell’s equations [2, 3, 4]. The primary
reason for this interest is that the basic formulation of
FVTD does not require a structured spatial mesh and so
its ability to solve electromagnetic problems involving
complex geometries is not constrained by a lack of
ability to accurately describe the physical problem.

The finite-volume technique is a standard technique
used in Computational Fluid Dynamics (CFD) [5]. One
of the first comprehensive implementations of the
technique for CEM was reported by Shankar et al. in the
early 1990’s [2]. Shankar’s method collocates all the
field components at the center of each finite volume and
is implemented on structured body-fitted curvilinear
grids. It is a characteristic-based FVTD scheme which
uses a two-step second-order upwinding scheme. A
similar technique has also been presented by Shang [6].
Recently, two other groups have reported achieving
excellent results using a characteristic-based FVTD
technique [3, 4]. Both use a second-order accurate
Monotone Upstream-centered Scheme for Conservation
Laws (MUSCL) to interpolate the fluxes at the finite-
volume facets.

In this paper we consider the FVTD method on
unstructured grids and present the use of a higher-order
flux-interpolatory method, developed by Ollivier-Gooch
for fluid-dynamics problems [8], for our FVTD
computational engine. In addition, as the implementation
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of our computational engine was undertaken from an
object-oriented perspective, this paper demonstrates the
flexibility of such an implementation of the FVTD
algorithm for handling a multitude of volumetric mesh
descriptions, time-integration, and flux-integration
approximations. Also, in order to facilitate an in-depth
understanding of the method, we provide an outline of
the class hierarchy and programming tactics used during
implementation. Although our FVTD implementation is
in C++, the object-oriented concepts we discuss are not
language specific.

This paper is organized as follows: In Section 2, we
discuss the object-oriented implementation of a
discretized volumetric mesh. Section 3 presents a brief
overview of the theory behind the FVTD method as it
pertains to Maxwell’s equations. In Section 4, we discuss
some of the interpolatory techniques available for flux-
in tegra t ion ,  namely  MUSCL and  polynomia l
interpolation schemes. Section 5 overviews the time-
integration schemes considered which retain the operator
representation of the FVTD update equation as a matrix-
vector-product. Finally, Section 6 validates the engine by
comparing computational results using FDTD, FVTD
with MUSCL interpolation, and FVTD with third-order
interpolation against FDTD. The problems of transient
scattering from a PEC sphere and from a lossy dielectric
cube are considered.

II. OBJECT-ORIENTED MESH REPRESENTATION

The FVTD solution of Maxwell’s equations requires
a volumetric grid over a specified three-dimensional
region of interest. The meshing software we use1 is
capable of producing unstructured meshes comprised of
tetrahedrons, hexahedrons, prisms, or pyramids and so
our FVTD engine has been designed to function using
any of these volumetric elements. Any volumetric mesh
consisting of polyhedral elements may be fully described
as a collection of elements which are, in turn, described
by vertices and facets. Thus the mesh description
inherently includes a geometrical hierarchy. Using an
object-oriented approach, our FVTD engine implements
a volumetric mesh as an object consisting of instances of
elements, vertices and facets each implemented as their
own separate classes as depicted in Fig. 1. The mesh
itself is an instance of the cMesh class and contains the
geometrical description of the mesh via arrays of
volumetric elements and vertices. A cMesh object is
responsible for accessing the mesh description from file

and is additionally responsible for saving the mesh
description in alternative formats compatible with
various visualization tools2. A brief discussion of the
vertex, element and facet descriptions follows.

Each vertex in the mesh, represented by an instance
of the cPoint class, contains three critical pieces of
information: its spatial location, a unique identification
tag corresponding to its location in the array of points in
the cMesh object, and a list of pointers to all elements
sharing it. The cPoint class also doubles as a general
Euclidean vector class and is equipped with standard
vector operators such as the cross-product.

Each element in the mesh, represented by an
instance of the cElement class, is also given a unique
identification tag and contains a list of pointers to cPoint
objects (denoting the vertices of the element) as well as
a list of the neighbouring elements. Storing neighbouring
elements by their identification tag is essential for an
efficient implementation. The element type is specified
by a member in the cElement class. In addition, the
cElement class is equipped with a set of utility functions
used to compute various geometrical properties of a
given instance of the class. The functions include the
computation of the element volume and dynamic
instantiation of element facets, as they are required
throughout the FVTD algorithm, by means of the cFacet
class. The different types of volumetric elements each
require different functions for appropriately computing
their geometrical properties. Because simple polyhedral
computat ions can be eas i ly  coded inl ine ,  our
implementation does not exploit inheritance to derive a
specific element from a base element class. If, however,
higher order elements were of interest (i.e., elements
with curved boundaries) such inheritance would be
benef ic ia l  for  more  compl ica ted  geometr ica l
computations.

Although it is possible to pre-compute and store
facet information for each element in the mesh,
experience has shown that such a list significantly
increases memory requirements. Therefore, as needed,
element facets are generated via function calls in the
cElement class which dynamically instantiate an instance
of the cFacet class. A facet object is responsible for
computing both the area and outward normal of the facet
which it stores for use during the FVTD algorithm.1. A versatile mesh generator is Gmsh (www.geuz.org/gmsh/), a 

program available under the GNU license agreement that is 
capable of producing unstructured volumetric grids. It is our 
tool of choice for mesh generation. 

2. We often make use of ParaView (www.paraview.org) for 
visualizing vector fields.

72 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007



III. FVTD FOR CONSERVATION LAWS AND 
MAXWELL’S EQUATIONS

The FVTD algorithm is usually applied to physical
phenomena which are governed by a conservation law.
For example, given a scalar quantity, denoted by ,
a typical conservation law would be,

(1)

where the flux vector  is some function of , and
 is a source term. Integrating the conservation law

over an arbitrary volume, , with boundary  gives,

(2)

where the divergence theorem has been applied to the
second term and  is the outward directed
surface element vector. The FVTD method for solving
electromagnetic problems considers all of the electric
and magnetic field components as components of a
so lu t ion  vec to r  ,  and  then  cas t s
Maxwell’s equations into a form analogous to (1).
Following a procedure similar to that given in [3],
starting from Maxwell’s two curl equations,

(3)

we employ the matrix operator,

(4)

by which the curl of a vector can be expressed in terms
of the divergence of a matrix operating on the vector,

. (5)

In terms of this new operator, Maxwell’s equations
can be written as

(6)

or, even more succinctly as

, (7)

where,

, , , . (8)

Integrating the curl equations (7) over an element
denoted by  with boundary  and using the

u x t,( )

∂tu x t,( ) ∇ f u x t,( )( )⋅+ S x t,( )=
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Fig. 1.  Object-oriented mesh representation: class hierarchy.
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divergence theorem to convert the integral over volume
to integrals over the surface as in (2) we arrive at

(9)

where matrix  is defined by,

, (10)

where  denotes the outward normal to the volume
surface . Analogous to (2), the value  is
referred to as the flux through the surface . 

In order to discretize the electromagnetic problem of
interest we associate with each cell a value of the
generalized solution vector  located at the barycentre

 of element . This value is taken to represent the
average of the generalized solution vector over the
element , i.e.,

(11)

where  is the volume of element , and where 
scales with the size of the element. Next, we define

 and decompose  as a sum of
matrices with positive and negative eigenvalues (due to
the symmetry of  the eigenvalues are real). Limiting
each volumetric element to a homogeneous isotropic
s p a c e  d e s c r i b e d  b y  m a t e r i a l  p a r a m e t e r s

 and ,  i t  can be
shown that the matrix  has six eigenvalues given by

 where . To
avoid inducing artificial numerical oscillations into the
solution, it is beneficial to perform flux-splitting [3] by
decomposing  into

, (12)

where,

 

. (13)

To compute the value of the surface integral in (9)
we require knowledge of the flux  on the
boundary . To determine the flux, we let  denote
the solution vector on the inside part of the surface 

while using  to denote the solution vector on the
outside part of . We can consider  and  as
limits of the solution  from the inside or outside of
the element on to . The electromagnetic boundary
conditions for the continuity of the tangential electric and
magnetic field components across a boundary, 

, (14)

are used to express the flux at the surface  in terms of
the operator  as . As

 and  are not known explicitly they must be
interpolated from the known values in the cell interior. 

The flux at the boundary  may be split by first
calculating  and  at the cell boundary. Let us
consider the top and bottom blocks of  and

 separately. The top block is

  and 

. (15)

We multiply the first by  and the second by  to
obtain

  and 

(16)

w h e r e  .  F i n a l l y ,  a  l i n e a r
combination of these two gives the desired quantity,

(17)

where  and .
A similar construction can be made for the bottom block
of  and  in order to obtain .

Using these results ,  we come to a  concise
representation for the flux,

(18)

where,
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 and 

(19)

and  is the identity matrix, and  is the
impedance.

At PEC boundaries zero tangential electric field and
the image principle can be used to derive that the linear
o p e r a t i o n  o f   o n   b ec o m es

, where 

. (20)

Consequently, it can be shown that the scattered field
formulation derived using the image principle results in,

, (21)

where  is the source term for the
scattered field formulation.

Finally, while a discussion of high-order mesh
truncation schemes is beyond the scope of this paper, it
is possible to obtain a simple mesh boundary condition
by setting  to zero at the mesh boundary.

IV. FLUX INTEGRATION: MUSCL AND 
POLYNOMIAL INTERPOLATION

It is apparent from (9) and (18) that integration
around the boundary of an element requires knowledge
of the flux (or equivalently the solution values  and

) at both sides of the cell boundary. As we are only
storing the solution at the barycentres of the elements, we
require interpolation of these values to the element
border in order to accurately integrate the flux. Two
common techniques for interpolating the flux at the cell
boundary are the so-called upwind and MUSCL schemes
[3]. As upwinding provides only first-order accuracy and
results in significant dissipation, we omit it from further
consideration. For brevity, details of the MUSCL
scheme are omitted, however the MUSCL scheme as
detailed in [3] was implemented yielding second-order
accurate results as will be shown in Section 6. Further,
we have applied polynomial interpolation, for which we
now summarize the required theory for computing the
fluxes at the volumetric element boundaries.

IV.A  The ENO Requirement

In any interpolatory technique used to compute the
value of the solution  at the boundary of a facet, we
make use of a stencil comprised of the values  located
at the centers of some elements in the neighbourhood of
the facet of interest. Although stencils for an arbitrarily
high order of approximation are available, when they’re
applied to a solution with strong gradients, experience in
CFD has shown that this could result in unwanted
numerical oscillations [7]. The idea behind essentially
non-oscillatory (ENO) interpolation schemes, used
frequently in CFD for approximating the solution value
at a given facet, is to use only neighbouring solution
values that are smoothly connected to the solution at the
facet in question. That is, the stencil that we use to
approximate the facet values cannot cross points where
the solution has steep gradients. Details can be found in
several publications dealing with computational fluid
dynamics (see, for example, [7, 8]) which deal with
problems that involve the evolution of shocks.

Initially, we believed that maintaining ENO
interpolation schemes would be critical to updating the
solution inside the computational domain. We thought
that material boundaries would require special care in
selecting the interpolation stencil in an analogous
manner to handling shocks in computational fluid
dynamics. However, upon numerical experimentation,
we found that such interpolatory stencil modifications at
material boundaries were unnecessary and, due to the
overhead required in computing the modified stencils,
we no longer impose ENO requirements. To date, we
have not encountered a problem of interest where such a
scheme is required. We do however, acknowledge that
for some problems, we may have to re-evaluate the
importance of ENO schemes.

IV.B  General Polynomial Interpolation

The work described herein closely follows the work
of Ollivier-Gooch found in [8]. In describing the
polynomial interpolation method of Ollivier-Gooch we
consider a polynomial  which interpolates the
field value solution  around a point  and require
that the difference between this polynomial and the exact
solution be of order , that is,

. (22)

IV.C  Stencil Selection

We require a stencil such that the data we use to
determine the coefficients of our polynomial are not too
far from the control volume center, . A good way to
collect finite volumes for the stencil around a finite
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volume  is to use the first neighbouring elements
around , i.e., those which share a common facet with

. Iterating this process and thereby adding new
elements to our control volume, we will collect a large
enough stencil to achieve the desired accuracy: enough
points to determine the coefficients for our polynomial.
The set of elements from which the stencil will be
generated may be written as,

(23)

wi th  .  The  intersec t ion   i s
assumed null if there is no common facet between
elements  and . The stencil  is then built by
considering the center points of each element in .
Usually  will be the same as the maximal possible order
of accuracy for the stencil [8].

IV.D  Polynomial Interpolation Theory

According to the dimensions of our problem, we
consider the function  and we write a
general Taylor’s expansion about the point . If the
function is infinitely differentiable in the neighbourhood
of , then we can write,

(24)

which is a polynomial approximation for  given by
the truncated Taylor’s expansion of degree . In (24)

. As the FVTD solution is in terms
of cell-averaged values , we let the expansion point 
correspond to the barycentre of  and take a volumetric
average of both sides of (24) over  to obtain,

. (25)

Now it is our desire to express  in terms of the
average values . We begin by extracting the first term
of the summation in (25) which happens to be  and
write it in terms of  as,

. (26)

Next, by extracting the first term of (24) we obtain

(27)

Finally, substitution for  from (26) into (27) gives,

(28)

where 

(29)

define the element moments and where 
corresponds to the first two terms on the right hand side
of (28) because the two error terms are of the same order.
By the selected substitution method we have implicitly
enforced that the average polynomial value over the
element  is equal to the cell-averaged solution  i.e.,

, (30)

due to the fact that, upon cell-averaging of (28), the error
terms cancel. Finally, to determine the polynomial
coefficients, corresponding to the partial derivatives in
(28), we minimize, 
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, (31)

where details can be found in [8].
We note that expression (28) can be used to compute

the true solution anywhere within the stencil from the
cell-averaged value in each element. Therefore, this
method enables us to convert the stored cell-average
values into a high-order solution for  and  on
element boundaries. It also allows us to output the true
solution for electromagnetic problems of interest such as
for scattering from a PEC sphere as shown in Section 6. 

IV.E  Object-Oriented Flux Interpolation

It is clear that an object-oriented approach to the
implementation of an engine capable of various flux-
interpolation schemes is possible. Further, one may be
interested in adaptively applying different flux-
integration techniques to save on computational
resources in regions where high-order techniques are not
required for adequate accuracy. Therefore, it is not
desirable to derive a flux-interpolation method from a
base class. Instead, our implementation uses a switch
statement to select between the methods so that all
methods are at our disposal during computation.

Using the above methods to approximate the flux at
the boundaries i.e.  and  we substitute (18) into the
second term of (9),

(32)

where  is the number of facets making up element ,
 denotes the element neighbouring  via its 

facet and  denotes the outward normal to the 
facet. Note that  and  are the integrals of the inner
and outer solutions over facet  respectively which we
compute analytically from the polynomial interpolation
function up to third-order accuracy.

Finally, for a mesh comprising of  elements we
define

(33)

where   i s  the  vector  of  a l l

unknowns. Using the notation of (32) and (33) in (9)
gives,

(34)

where the time-derivative is taken element by element
over  and where  is a source term where each
element of  represents the right-hand-side of (9) at the

 cell. It is of importance to note that under linear flux
interpolation the result of the operator  operating on 
can be viewed as a matrix-vector product.

V. TIME-INTEGRATION SCHEMES

Having organized the flux-integration into a matrix-
vector product over the entire computational space, it
remains to discretely approximate the time derivative in
(34). We have considered forward-Euler, predictor-
corrector, Runge-Kutta and Crank-Nicholson methods.
These methods are explicit schemes, save Crank-
Nicholson. For source-free media, the predictor-
corrector scheme discretization of (34) using a time-step
of  will give a system of equations of the form,

(35)

It is clear that this may be re-written as,

(36)

where,  and . In
fact, any explicit scheme can be formulated as a matrix-
vector-product and so an explicit formulation of the
FVTD method requires the one-time filling of the matrix

, setting the initial value of the solution vector over the
domain, followed by a simple matrix-vector product at
each time-step. Implementation of this update scheme
should make use of the matrix-vector product updating
inherent in the algorithm. For this reason, we have used
our matrix library, based on an underlying abstract
matrix class, namely, cAbstractMatrix. The benefit is
that this abstract class is compatible with various linear
system solvers such as our own implementations of
GMRES, BCGStab, etc. [9], so that in implicit schemes,
when the operator shows up on the left-hand side of the
update equation, our solvers can be used.

Unfortunately, storing the entire operator matrix
will require substantial amounts of memory for large
meshes. For example, in the case of a tetrahedral mesh
using simple upwinding, each block of six rows of the
matrix would contain five (corresponding to the element
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in question and its four facets)  blocks. A mesh
consisting of one million elements where 8 byte double
precision values are used to store the matrix entries
would require  Gigabytes of
RAM to store the matrix. The situation becomes worse
when higher-order interpolatory schemes are considered
(for example the MUSCL scheme would increase this
requirement 5 times). With our current resources we are
unable to store the entire matrix. Instead, we update the
solution  by dynamically computing the  six-row
block of . Therefore, for explicit schemes, we have
overloaded the cAbstractMatrix matrix-vector-product
operator with this row-by-row method of multiplication.
T h e  m a t r i x  c l a s s  w e  u s e  t o  i m p l e m e n t  t h e
cAbstractMatrix class for solving FVTD problems we
call cMaxwellApprox. A depiction of the conceptual flow
of the algorithm as well as the corresponding object-
oriented design is shown in Fig. 2.

VI. NUMERICAL RESULTS AND DISCUSSION

VI.A  Scattering from a PEC sphere

We present the FVTD results for scattering from a
perfectly electrical conducting (PEC) sphere as an exact

series solution is available in the frequency domain [10],
and a time domain solution may be easily obtained using
the inverse Fourier transform. This problem was selected
as a benchmark for the FVTD engine as the irregular
surface of the sphere coincides with one of the primary
reasons for developing finite-volume methods on
irregular grids: eliminating the need for stair-stepping at
arbitrarily shaped boundaries.

The finite-volume algorithm using the previously
discussed flux- and time-integration methods was tested
for a PEC sphere with a three metre radius centered at the
origin of a Cartesian coordinate system. An -polarized
electric-field plane-wave transient pulse 
incident in the -direction and varying as the derivative
of a Gaussian was selected where, for 

(37)

T h e  p a r am e t e r s  w e r e  s e l e c t e d  a s :  ,
s ,  a n d  s  g i v i n g  a

shortest free-space wavelength of about 3 metres
resulting in significant energy in the resonance region of
the sphere.
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Fig. 2.  Algorithm flow and associated class description for the FVTD engine.
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Fig. 3 shows the computational results for the -
component of the scattered field at the back-scatter
location (0, 0, -7) (a), (c), (e), as well as at the side-scatter
location (-7, 0, 0) (b), (d), (f). For both measurement
locations, the analytic solution is compared to solutions
o b t a in e d  u s i ng  t he  M U S C L  a nd  po l y n om i a l
interpolation finite-volume methods computed on a
mesh with an average cell edge length of 0.75 m. All
results shown use the second-order predictor-corrector
time-integration scheme. In addition, FDTD results are
presented for a cell edge length of 0.1 m. The figure
shows that the FVTD results are in excellent agreement
with the analytic solution.

To further test the FVTD engine, the same PEC
sphere problem was solved for volumetric meshes with
average element edge lengths of 0.6 and 0.5 m. The back-
scattering results are summarized in Table 1. In the table,
the  error denotes the percent error between the
computed solution and the analytic solution as measured
by the  norm. Clearly, for the same level of
discretization polynomial interpolation is more accurate
than MUSCL as expected due to the higher-order spatial
approximations used in the polynomial interpolation
scheme.

Comparing the FVTD results with the FDTD results
we see that for the 0.1 m FDTD grid, the FVTD
algorithm provides better accuracy using MUSCL on the
0.5 m mesh. Third-order polynomial interpolation
provided more accurate results than FDTD even in the
case of the 0.75 m mesh. The increased accuracy
obtained for both the MUSCL and polynomial
interpolation schemes comes at the cost of increased
memory requirements needed to properly store the
unstructured mesh as discussed in Section 2. For
example, we require 203 Megabytes of RAM to store
700,000 mesh element solutions using the MUSCL
scheme, while FDTD uses roughly the same amount of
memory for 8 million grid point solutions. Fortunately,

the MUSCL solution at this level of discretization
already out-performs the accuracy of FDTD for the
simple case of the PEC sphere. For more complicated
geometries, we feel that the benefits of any of the FVTD
techniques will be even more prominent.

VI.B  Scattering From a Dielectric cube 

To test the FVTD implementation’s ability to handle
dielectric bodies and finite conductivities we show the
scattering from a lossy, dielectric cube. As there is no
known analytic solution for this problem we simply
compare the results with the FDTD solution. The cube
dimensions were selected as 6 m and the physical
parameters  were  se lec ted  as :  ,  ,

S/m. An x-polarized, -incident, electric-
field plane-wave Gaussian transient pulse 
was selected such that for 

(38)

with parameters , s, and
s. Again, FVTD results were simulated

on a volumetric mesh with an average element edge size
of 0.75 m and were compared to FDTD results obtained
from two regular grids: a 0.2 m regular grid and a 0.5 m
regular grid. Results are shown in Fig. 4.

From the results, we can see that the FVTD solution
to the lossy cube problem compares quite well with the
FDTD solution. The largest difference in the plots is
most likely due to differences in the dielectric modelling:
FDTD assumes a diamond shaped stencil for imposed
dielectric objects while FVTD is capable of imposing a
constant dielectric within each finite volume, providing
a more accurate physical model of the cube.

x

Table 1: Comparison of PEC sphere back-scattering results.
Solution method Average Element 

dimension (m)
Number of 
mesh cells

Memory Require-
ments (Mb)

Number of 
time steps

 Error of 

MUSCL 0.75 ~200,000 62 ~750 7.13%

MUSCL 0.6 ~400,000 117 ~900 7.40%

MUSCL 0.5 ~700,000 203 ~1100 2.87%

Polynomial-3 0.75 ~200,000 131 ~750 3.12%

Polynomial-3 0.6 ~400,000 251 ~900 1.70%

Polynomial-3 0.5 ~700,000 435 ~1100 1.69%

FDTD 0.1 ~8,000,000 223 ~2000 3.25%
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Fig. 3.  Scattering from a 3 meter PEC sphere: Back-scattering (a), (c), (e); and Side-scattering (b), (d), (f);
MUSCL (a), (b); Polynomial Interpolation (c), (d); FDTD (e), (f).
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VII. CONCLUSIONS

The unstructured grid FVTD method using MUSCL
or polynomial interpolated flux-integration, and second-
order predictor-corrector time-integration, has given
excellent results for all scattering problems tested thus
far. The FVTD method has shown to yield more accurate
results than FDTD solutions for the same level of
discretizat ion.  This  is  due to a  more accurate
approximation of the geometry for curved scatterers in
FVTD. In the case of the PEC sphere, to obtain the same
level of accuracy using FDTD required a cubical cell-
size 7 times smaller than the average cell edge-length in
FVTD. 

Although we have not included a comparison of the
computational time required by FVTD and FDTD for the
same numerical problem, we can say that compared to an
un-optimized FDTD implementation, our un-optimized

FVTD engine ran substantially faster for the same level
of accuracy. We did compare the performance of our
engine against a fully optimized commercial FDTD
package and found that our engine ran significantly
slower. Consequently, we are currently working on
optimizing our code and formulating a new criterion for
obtaining the maximum time-step which satisfies
stability conditions on an unstructured grid.
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