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Abstract

Numerical solutions of the equations describ-
ing electromagnetic pulse propagation in geo-
metrically complex Debye-dispersive dielectrics
are used in the development of safety standards
for human exposure to non-ionizing radiation.
Debye dispersion is a relaxation process, a phe-
nomenon which occurs when the underlying ma-
terial is forced into non-equilibrium due to the
passing waves. This relaxation is typically stiff
in applications, and the system of equations is
then singularly perturbed. Such systems are no-
toriously expensive to solve with standard nu-
merical methods. We review previous work re-
lated to the numerical solution of such prob-
lems, and consider a representative numerical
scheme in order to elucidate the nature of the
challenge posed to Computational Electromag-
netics by the stiffness. Further, an analysis of
the stiffness leads us to propose a scheme that
seems “natural” for the problem at hand.

1. Imtroduction

The development of ultra-short, high-
amplitude pulse emitters [1] has put in the spot-
light the fact that the electromagnetic properties
of real media depend strongly on frequency, i.e.,
real media are dispersive [2]. The most natu-
ral means for studying the interaction of such
pulses with complex media is through the nu-
merical solution of the time-domain Maxwell’s
equations coupled to equations that describe the
evolution of the induced macroscopic polariza-
tion. These numerical simulations are often used

in the assessment of human exposure to high-
power pulsed electromagnetic fields during the
health and safety analysis of systems involving
these pulses. For this reason we are interested in
developing prediction tools that are robust and
accurate.

The Computational Electromagnetics commu-
nity has demonstrated a variety of extensions
of the popular FD-TD scheme [3] to the model-
ing of pulse propagation in temporally dispersive
media with complex geometry. A representative
list of these extensions is [4]-[7]. Some of these
approaches append to Maxwell’s equations a set
of ordinary differential equations, that either de-
scribe the local in time constitutive relation [4]
involving the displacement D and the electric
field £, or the dynamic evolution of the polariza-
tion P excited by the propagating electric field
[5]-[6]. Other approaches use a convolution rep-
resentation of the constitutive relation which is
updated in sync with the time update of the
FD-TD discretized Maxwell’s equations [7].

The previously published extensions of the
FD-TD method to simnulate pulse propagation in
dispersive dielectrics did not provide any anal-
ysts of the accuracy and stability properties of
the resultant algorithms, neither was any guid-
ance given for choosing the discretization pa-
rameters for a particular medium. Recently, sta-
bility and phase error studies were performed for
the methods in [4]-[7]. The works [8]-[10] ana-
lyzed the spurious numerical properties of the
extensions of FD-TD to dispersive dielectrics,
and provided guidelines for choosing the dis-
cretization parameters so that minimal numeri-
cal artifacts would occur. The main conclusions
that can be drawn from, e.g., [§] is that a) the
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timestep must be a small fraction of the short-
est relaxation time of the underlying material,
and b) the Courant number » [11] must be set
with respect to the maximum phase speed in
the problem (v = vP****(w = o0)At/Az where
vPhase(;) is the phase speed), and should be
chosen as close as possible to the value corre-
sponding to the stability limit of the standard
FD-TD (v < 1/v/d where d is the number of
spatial dimensions). The algorithms are use-
ful in long-time integrations of the equations
when these two conditions are met since then
the phase and amplitude errors are minimal for
a given medium. Herein, we show how these re-
quirements pose a challenge to the methods in
[4]-]7} which severely limits their applicability
in realistic cases of scattering of experimentally
available pulses from three-dimensional disper-
sive scatterers.

We now outline the remainder of the paper.
Section 2 describes the model equations which
we use to develop our analysis in dispersive di-
electrics. In Section 3 we present a numerical
method, which is an extension of the one in [5],
for solving the model equations, and through
a dispersion analysis we determine several non-
dimensional parameters whose value affects al-
gorithm performance. We also discuss the stiff-
ness issue and the concomitant discretization re-
quirements of the scheme. A reformulation of
the mode! equations in Section 4 allows us to re-
late the non-dimensional parameters of Section
3 to quantities uniquely pertaining to propaga-
tion in dispersive dielectrics and to determine
the propagation of high/low frequencies in De-
bye dielectrics via a singular perturbation anal-
ysis [12] of the problem. We close in Section 3
with a discussion of the shortfalls of standard
schemes in light of the results presented in Sec-
tions 3 and 4, and propose a scheme that is more
“patural” for dispersive problems.

2. The Model Problem

In this paper we will be concerned with media
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whose dispersion is due to relaxation processes.
The modeler fits experimentally obtained dielec-
tric data to the complex relative permittivity
function

(2.1)

__em-{-zl_

for the relevant range of frequencies w in or-
der to study the propagation of a given elec-
tromagnetic pulse in a given material. In (2.
1) €, is the infinite-frequency relative permit-
tivity, € the zero-frequency relative permittiv-
ity of the n-th relaxation, and 7, the n-th re-
laxation timescale. The fit parameters are or—
dered so that 7, > ... > Tpr and €} > ... > eM

The phase veloc1ty of harmonic waves in the d1-

electric is v = c/Re{\/ )}, with ¢ be-

ing the speed of hght in va,cuum This in turn
forces the choice €., < €. The parameters for
which (2.1) fits water da,ta in the microwave fre-
quency range with M =1 are ¢, = 80.33, €x =
1.0, 7 = 8.13 ps. The M = 1 water model will
be considered later in order to concisely demon-
strate the analysis. A typical example of (2.1)
for a muscle/fat model is given in [13] where
M =35, e = 4.3, es—8x105 2 =819 %
104, € =1.19x10%, €2 =363, & = 51 andm =
2.31 ms, 7 = 3.7 ps, 73 = 238 ns, 74 = 692 ps,
and 75 = 8 ps. An alternative, ultra—wideband

Wty

ph.a.se

‘model for water (not used herein) combines De-

bye and Lorentz media to fit available permit-
tivity data [14].

Using the inverse Fourier transform with (2.
1) in the electromagnetic frequency—domam con-
stitutive relation, D = e (w)E = eo(emE +
M P, we close the system of Maxwell’s
equations in the time-domain with M differep-
tial equations, one for each Debye relaxation P"
(n = 1,..., M) forced by the electric field. For
our model problem we will consider a plane pulse
normally incident on a homogeneous dispersive
half-space from the air side (z < 0). The dielec-
tric occupies the half-space z > 0. The relevant
one-dimensional equations are

o _op
“°8t T 9z’
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where ¢, and y, are respectively the permittiv-
ity and permeability of the vacuum, and é¢* =
€7 — €e. Apart from ¢, and p,, all other pa-
rameters in {2.2) are obtained by fitting (2.1)
to experimental data for the material of inter-
est. In (2.2) the polarization also depends on
the spatial coordinate because it is induced by
the electric field. The incident electric field is
an arbitrary pulse E'"(z,t) = f(t — z/c) of du-
ration 7,. We assume that the half-space is qui-
escent for ¢t < 0. Operational considerations fix
the incident pulse shape f, and T,. On the in-
terface, z = 0, the total electric field is given by
E(0,t) = f(t) + E™/(0,t) = g(t), where E™/ is
the reflected field. Thus ¢ is known, either by
direct measurement of £ on the interface, or by
measurement of £/ in the air region z < 0.
This allows us to consider (2.2) in Section 4 as
a boundary value problem with zero initial data
in the quarter-plane z > 0, t > 0, i.e., as a
signaling problem.

3. A Numerical Method for the
Model Problem

A numerical scheme for (2.2) is

k+i _ k-1 At L i
HJ_{_; - H_H'; + poAz(Ej-i—l _E.?)’
Ek-}-l 1 sl P'ﬂ.,k“}'l _Ek 1 M P'n,k
i T ;nZ_l R ;‘2;1 i
At kby e
+ eoemﬁz(Hj‘*’lﬁ B f‘§)’ (3.1)
ﬂ,At k 1 At n,k-l-l
- 6066 EE&;*- -|- (1 + 2—7_;')})5,
At _, At B
= ¢, 6¢"—FE" — — P17,
€,0¢ QTnEJ +(1 21_n) ¢
where n = 1,..., M is the relaxation mechanism

index, k is the discrete time index, j is the dis-
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crete spatial index, and At and Az are respec-
tively the time and spatial steps. Since the po-
larization is induced by the electric field it is
required that these two quantities be collocated
in time and space. The reader is referred to [5]
for the M = 1 version of (3.1).

The scheme (3.1) treats the electric and po-
larization fields implicitly with the trapezoidal
method, and the electric and magnetic fields
explicitly with the FD-TD method. Thus, its
stability only depends on the Courant number,

Voo = 5'2’5%’ where Cop = c/, / €oo is the infinite-

frequency phase speed (i.e., the largest speed
in the problem). The Courant stability limit is
Voo < 1 since (3.1) is second-order accurate both
in time and space. Common among schemes of
equal accuracy in space and time is the conse-
quence that the phase error will be the lowest if
Voo i as close to the stability limit (v, — 1/V/d)
as possible. We will see in Section 5 that this is
undesirable for dispersive problems. The M =1
case, along with several other schemes for Debye
and Lorentz dielectrics, has been investigated in
[8]-[10]. For M > 1 the numerical dispersion
relation from (3.1) is

k(w)A At
V2, sin’ (WQ) : =sin2w——2— X
M
v, — 1
1 3.2
(+,§11—z’tan“—-—?tﬁ)’ (32)

where k(w) is the numerical wavenumber, w
is the real frequency, v, = €}/€x, and h, =
At/2r,. The non-dimensional v, can be in-
terpreted as squares of ratios of phase speed,
with vas being the square of the ratio of the
infinite-frequency phase speed over the zero-
frequency phase speed (see Section 4). The
non-dimensional &, indicate how well the chosen
timestep samples the n-th relaxation timescale.
For Debye dielectrics it is always 1 < v <
vy < ... < vp and, for a fixed timestep, h; <
he < ... < hy. The numerical dispersion re-
lation (3.2) is compared to the analytical one,
k*(w) = wlp,e.6(w) where €(w) is given by (2.
1), for a given dispersive medium and the dis-
cretization parameters are chosen so that the
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Figure 1: Phase error of the obvious numerical scherne in
a medium with M = 2 and v = 1 for hy = 107%, ha =
10~! (dashed line), Ay = 107°, ha = 107? (dash-dot
line), h; = 1078, hy = 10? (diamond symbols). The
horizontal coordinate is X = wAl.

two dispersion relations agree within a preset
accuracy over a desired band of frequencies.

It became obvicus in [8] that the parameter
h = At/27 has to be O(107?) at least in order to
obtain good results in long-time simulations for
an M = 1 medium. Working with (3.2) one can
show that this restriction now applies to Aas. In
Figure 1 we demonstrate this for a fictitious {(but
very reasonable) case of a medium with M = 2,
T =8ns, ™ =8 ps, € = 1, €& = 80, and
¢2/e! = 107!. Note from the Figure that the
scheme can be used for a long-time simulation
as long as hy ~ O(1073). As a result, in a sim-
ulation of propagation of a pulse with duration
T, (which, for real sources, is typically O(107°)
sec or longer) one can not avoid having to finely
resolve 7as. The Ap ~ O(1073) requirement
results in a very small timestep, which then
over-resolves the timescale T,, and, through
the Courant condition, in an extremely small
spatial step. Realistic problems, e.g., those
involving human-sized scatterers composed of
such a medium, will quickly grow out of reach
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of ordinary computational resources. For the
muscle/fat model of [13] 7p/71 ~ 107°, and
T,/mas > 10° for a pulse with T}, > 107° sec, so
we expect the time/spatial steps to be unneces-
sarily small in this case too. Similarly, for the
M = 1 water model it is typical that T,/7 > 10°
when realistic cases are simulated and again ex-
cessive computer resources will be needed.

[t is evident that we need numerical schemes
that can simulate pulse evolution on timescales
which are 2-3 orders of magnitude longer than
the smallest relaxation times that arise in ap-
plications without having to resolve those small
relaxation timescales. Such schemes should be
able to maintain their theoretical accuracy for
har > | when T, 3> 7p. A research program
in that direction starts with an analysis of (2.2)
in order to understand those qualitative aspects
of the problem that are unique to dispersive di-
electrics and to the presence of stiffness.

4. Analysis of the Model Problem

We determined elsewhere that the more gen-
eral form of (2.2) for oblique incidence on a
dispersive half-space can be reduced to a sin-
gle partial differential equation (p.d.e.) for the
electric field component in the quarter-plane
z>0, t > 0. In [15] we derived and analyzed
the following signaling problem:

M
Eﬁlaiw-l(au - ¢ 8..)E =0;

z>0,1t>0,
=0
E(0,1) = g(t); t>0,
E(z,0) = 3E(z2,0) = ... = (4.1)

OMYE(2,0)=10; =z2>0,

E(z = oo,t) — 0.

Equation (4.1) is a strictly hyperbolic p.d.e.
since the [ = 0 term, which is the principal part
of the operator acting on E, has a complete set
of M + 2 distinct eigenvectors, one for each of



PETROPOULOS

the two distinct eigenvalues *cp, and M eigen-
vectors for the zero eigenvalue of multiplicity M
due to the 8M operating on the I = 0 term (see
[16] for definition of hyperbolicity). Note that
(4.1) also holds in two- and three-dimensions
for every component of the electric field if 0, is
replaced by VZ, the appropriate higher dimen-
sional Laplacian. This is because the incident
electric field induces the macroscopic polariza-
tion so that ¥ - D = 0 implies V - P = 0 every-
where inside a homogeneous medium. Equation
(4.1) is also valid for material parameters that
are continuously or discretely layered in the z-
direction (depth) but invariant with respect to
translation in the transverse (z,y) coordinates.
The 5; and ¢; are given in [15] and form the or-
dered sequences (in (4.1) co = c)

Bo=1< B <..< B <o < Brrea < Bus

co = vP%%(w = o0) > 1 > (4.2)

- o - - 0 ¥ B o ¥ Uph'a"e(w =0).

In Debye dielectrics there are M + 1 wave fam-
ilies. Each family is described by the appro-
priate term of the sum in (4.1) while the other
terms contribute to its dispersion and diffusion
as it propagates. For numerical applications, the
most important waves are those that are mainly
described by the I = 0 and ! = M terms in (4.
1) as the / = 0 term describes the propagation
during the time when the pulse first starts inter-
acting with the dielectric, while the [ = M term
describes the long-time effect of the dispersion
on the propagating pulse. This is the reason for
studying the M =1 case below.

We proceed with the M = 1 water model (see
Section 1) in order to demonstrate the tech-
niques involved in analyzing (4.1). The p.d.e.
for the electric field now is

(Eﬂt —_ C Etzz (Ett — ClEzz) = O (43)

where ¢, = ¢/\/€; is the zero-frequency phase
speed, and - ~ O(10%%) sec™’. To deter-
mine how the high frequencies (short-time be-
havior) propagate in Debye media we substitute

12
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E(z,t) = u{z,t)H[#(z,t)] in (4.3), where the
Heavyside function is H[¢] =0 (1) for ¢ > 0 (<
0), and u(z,t) represents the smooth part of the
solution. With this substitution we determine
the wavefront surface, ¢(z,t), and the behav-
ior of u(z,t) on the wavefront. We find that
é(z,t) = zxcsot, 1.e., that the characteristics are
straight lines and have speed c., and determine
that on the wavefront, ¢(z,t) = z — ¢t = 0,
u(z,t) satisfies

2
©
— 1y =0.
( = Ju

s

(4.4)

U + Cool, T
2€00T
The solution of this p.d.e. shows that the high-
frequency components of the electric field de-
cay exponentially fast in a spatial interval of
length c,.7 (~ O(1073) m for water) which we
have previously labeled the “time-domain skin-
depth” [15]. Thus, our problem has a small spa-
tial scale due to the time stiffness since (4.4) is
hyperbolic. In this short depth, the low frequen-
cies will only be advected with speed ¢y as the
material has not had time to react. The pro-
cedure just outlined can also be though of as a
short-time asymptotic analysis of the problem.
In addition, it indicates that any discontinuities
in the signaling data will propagate on the char-
acteristics of (4.3) and their amplitude will de-
cay exponentially.

Next we consider (4.3) taking into account the
largeness of =-. We define the small parame-
ter ¢ = =T, and note that ¢/T} is still very
small (< O(107%)) for nanosecond (or longer)
pulse duration. The assumptions which make
the analysis possible are reasonable in light of
experimental reality. Here is our singularly per-
turbed problem statement:

€ (Bt — CgoEtzz) -+

(Etg - C?Ezz) = 0; z > 0, t> 07
E(0,t) = g(t); t20, (4.5)
E(2,0) = &:E(2,0) = 0y E(2,0) =0; 220

E(z — o0,t) = 0,
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where g(t) is defined in Section 2. To ana-
lyze (4.5) as ¢ — 0 we expand the solution in
powers of the small parameter, i.e., E(z,t) =
E°(z,t)+€EY(z,t)+..., and find that the zeroth-
order term satisfies E,—c} E2. = 0. The solution

of this “outer” problem is
E%zt) = g(t—z2/a); z<at
(4.6)
= 0 z>at

We see that the discontinuity, generated at t = 0
due to the turn-on of g(¢), will propagate along
the sub-characteristics of speed ¢; instead of
propagating along the true characteristics of (4.
3) which we found in the previous paragraph.

To resolve this inconsistency we intro-
duce an internal boundary-layer on the sub-
characteristic z = ¢ through a space-like limit
process

.- _ T Clt_
z" = 506y 5(e) = 0
(4.7)
tr=1t
and an “inner” expansion
E(z,t;¢) = E%a*,t*) + p(e) EY (2™, ") + ...,
(4.8)

where p(e) is an order parameter that depends
on € in general. We change to the “inner” vari-
ables (z*,%*) in {4.5) and substitute the “inner”
expansion in the resulting p.d.e. We display be-
low the most important terms to zeroth-order in
u(€) since we will have to match the first term
of the “inner” expansion to the solution (4.6) of
the “outer” problem (which is of zeroth-order in
€) to determine 6(¢):

€

8%(e)

= QClEg‘t‘ + ...

[—C?Egnxtxt + ClcgoEgnzux- + .-.]
(4.9)

In order for the terms displayed in (4.9) to bal-
ance we have to choose é(¢) = €'/%. Integrat-
ing out one of the J;» we obtain a heat equa-
tion, ie., E% = %90 .. for the field on
and near (within a space-like interval of width
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€'/?) the sub-characteristic of speed ¢;. This
heat equation describes the part of the inci-
dent pulse which propagates deep in the medium
(past the “skin-depth”). To see that propaga-
tion {albeit at a much slower speed) is main-
tained even though the problem now has a
strong parabolic character we use the inverse of
the coordinate change in {4.7) to produce the
advection-diffusion equation of [13]:

€ooT
E? +Ed = 3 (c2 — c?)ESz.

o

(4.10)
5

The derivation of the uniformly valid perturba-
tion expansion of the solution, along with the
the analogous procedure for Lorentz dielectrics,
will be presented elsewhere.

The method of analysis in this Section differs
from that used in [15]. However, the obtained
analytical results validate each other, and the
method used here lends itself to application to
difference equations with the purpose of deter-
mining scheme behavior in the presence of stiff-
ness.

5. Discussion

We know that the timestep, At, of second-
order accurate Leapfrog-based schemes (FD-
TD) for dispersive electromagnetic problems
must finely resolve the shortest relaxation
timescale Ty in order to achieve reasonable ac-
curacy over long-time simulations of pulse prop-
agation. In Section 3 we indicated how this re-
quirement, coupled with the requirement on v,
results in a need for large amounts of compu-
tational resources. It is tempting to accept the
small timestep at the expense of linearly increas-
ing the run time and lower the Courant number
(effectively increase the spatial step keeping the
timestep fixed) in order to save on core mem-
ory by using fewer spatial cells. However, the
standard schemes are then faced with a chal-
lenge as they do not allow a reduction of v;
the algorithms in [4]-[7] become more disper-
sive as v is reduced. Thus, it is reasonable to
look for schemes whose performance does not
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degrade as the Courant number is lowered be-
low the maximum value required for stability.
Further, in Section 4 we determined that the
pulse response in a relaxing dielectric is mainly a
diffusion wave traveling with the zero-frequency
phase velocity of harmonic waves. We also found
that the fastest speed, 1.e., the infinite-frequency
phase velocity, is important only in a thin layer
near the air/dielectric interface in which the re-
sponse is hyperbolic and decays exponentially.
The stiffness due to the large magnitude of the
Bar in (4.1) (or €,/ in (4.3)) resulted in the
fast speed being important only in a short time
interval of O(r) sec after the pulse has started
interacting with the dispersive dielectric. As an
example, in the M = 1 model of water permit-
tivity this thin interval corresponds to a depth of
O(107%) m, and thus the slow speed ¢; ~ ¢s /9
is the dominant speed in the model. It must be
emphasized that in the system (2.2) the speeds
c, 1 €1 < M, were not evident and that only
the reformulation enabled us to calculate them
(see also [15]). These speeds are disparate for
typical experimentally determined permittivity
properties.

Next we use the results summarized in the
previous paragraph to demonstrate the impli-
cations for numerical schemes of the time stiff-
pess and of the disparate wavespeeds in the dis-
persive dielectric. In a typical one-dimensional
computation we would use the results from [8}-
[10] to set the timestep and the Courant num-
ber v. Since the Courant number for stability
is set with respect to the highest speed in the
problem these actions have thus fixed the spa-
tial cell size for the computation to be Azp =
coAt/v. If now we assume that the remaining
M wave types in (4.1)-(4.2) are decoupled, then
the spatial step for each type is determined by
Az, = c,At/v, n=1,..., M, where ¢, and Az,
are respectively the wavespeed and spatial step
associated with the n-th wave type. Thus, for a
fixed timestep and Courant number, the spatial
steps for the most important waves in the prob-
lem (the / = 0 and | = M waves) are related as
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(using ¢y = €s0)

CM
AZM - ""'—AZQ.

Coo

(3.1)

Consequently we are using the wrong spatial cell
size since Az > Azp. It turns out that in
explicit finite difference schemes for hyperbolic
problems with multiple wave speeds the stability
requirement is based on the highest speed in the
problem while the spatial resolution is based on
the lowest speed. That the slowest wave speed
must be used to set the spatial resolution can
be understood by the following argument. Con-
sider a fixed frequency f; the wavelength asso-
ciated with the slow speed is smaller than that
associated with the fast speed through the re-
lation wavespeed = wavelength x f. This is
because initially the pulse will just decay ex-
ponentially in a very short interval and all of
its frequency components will travel with the
fast speed c, since the material has not had
time yet to react dispersively. Thus, a small
length scale develops in time because gradually
the pulse will slow down and travel with speed
cy. Since the slow speed is responsible for a
small length scale we should set our discretiza-
tion to sample it adequately. The cell size thus
determined is Azpy. We deduce that the dis-
parate speeds then require a reduction of the
Courant number since using the Azys from (5.1)
in the stability restriction coAt/Azpy = v (hav-
ing set v and At previously) we obtain the ef-
fective Courant number for the computation to
be coAt/Azy = veyrfco = v < v; the effective
Courant number v is lower than the Courant
number set so that the standard scheme would
introduce as little artificial dispersion as possi-
ble. Thus the main response is not well cap-
tured. For the materials of interest to bioelec-
tromagnetics it is 0.1 < cp/ep < 0.5 and thus
the standard schemes deteriorate as the prop-
agation evolves. Another way to see this is by
referring to Figure 2 where the stencil of the F'D-
TD method in one dimension is shown. Setting
the Courant number to be the maximum allowed
by stability considerations (v = 1 in one dimen-
sion) corresponds to using information along the
characteristics of the equations which have slope
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Figure 2: Space-time stencil of the FD-TD scheme.

1/¢s and then E7*! depends on ETy,, EF, and
E}~!, as one can show by eliminating the mag-
netic field from the difference equations. This
dependency reflects a fundamental property of
the partial differential equation only when in-
formation on the grid indeed travels with the
characteristic speed but we saw for dispersive
dielectrics that the fast characteristic speed c..
is important only during a short time interval.
Past that time interval the sub-characteristic
slow speed, ¢as, 1s important and then field in-
formation travels between time levels along the
lines of slope 1/cps, i.e., electric field informa-
tion travels along the arrows from time level n
to n + 1 that are attached at £z. in Figure 2.
To- capture this feature of the propagation one
needs to lower the Courant number but standard
schemes then become more dispersive. Alterna-
tively, one could redefine the spatial differencing
operators in the electric field update of the FD-
TD scheme to use magnetic field data at the
intersections of the solid lines connecting £}
and E7*! with the time level t = (n+1/2)At in
Figure 2. A similar redefinition should then be
done to the spatial differencing operators used
in the magnetic field update.

In summary, finite difference schemes which
are second-order accurate in both time and
space, the so called (2 — 2) schemes (FD-TD
among them), require that the Courant num-
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ber used be the maximum allowed for stabil-
ity (v = 1 in one dimension) in order for them
to introduce the least phase error. Here we
have shown that in the framework of the stan-
dard schemes the dominant waves in dispersive
problems are then calculated with an effective
Courant number which is less than v and stan-
dard schemes then do not preserve a fundamen-
tal property of the equations involved. How-
ever, (2-4) schemes that are second-order accu-
rate in time and fourth-order accurate in space
operate well for 0.1 < » < 0.4, and do not
suffer from a phase error degradation as the
Courant number is decreased [17]. In addition,
these schemes are overall fourth-order accurate
for At ~ O(1)Az®. This is equivalent to re-
ducing the Courant number while keeping the
spatial step fixed, or increasing the spatial step
while keeping the timestep fixed. Also, this rela-
tionship between the time and the spatial steps
in the (2 — 4) scheme is like the diffusion scal-
ing ¢ ~ O(1)2? which appears in our problem
asymptotically due to (4.10). We expect such
schemes to maintain their accuracy as the time
stiffness parameter hps becomes larger than one.
Numerical validation of this conjecture about
the suitability of the high-order methods for dis-
persive problems is the subject of our current
research.
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