
 

Abstract — This paper introduces recent developments 
in efficient sensitivity analysis with numerical 
electromagnetic solvers in the frequency domain. We 
start by reviewing our original discrete approaches for 
sensitivity analysis. We then propose and investigate, 
for the first time, two new discrete approaches which 
enhance the accuracy of the estimated derivatives. All 
four introduced approaches are based on the adjoint-
variable method and target solvers on structured 
grids. Discussion and comparison of the accuracy and 
convergence for the different approaches are also 
given. Examples include waveguide and printed 
structures. 

I. INTRODUCTION 

The adjoint-variable sensitivity analysis of 3-D 
distributed systems has been studied in structural 
engineering [1], and its use with the finite-element method 
(FEM) in structural shape design with gradient-based 
optimizers is a known efficient design approach [2]. 
Applications with the FEM in electromagnetic problems 
span problems from eddy currents to high-frequency 
devices, e.g. [3],[4]. 

In the implementation of this methodology with other 
numerical methods, some unsolved problems have been 
identified. First, time-harmonic electromagnetic (EM) 
problems lead to complex analysis with complex response 
functions, while the theory found in [1]-[4], and 
elsewhere, does not discuss the complex case. Adjoint-
network approaches [5] deal with complex problems but 
their relation to full-wave analysis is not so 
straightforward. Second, the classical adjoint-variable 
method assumes that the system matrices are differentiable 
with respect to the design parameters, and their 
derivatives are available. In EM analysis, however, the 
system matrix derivatives—if existing at all—require 
cumbersome analytical pre-processing and major software 
changes in the existing full-wave solvers. Besides, 
methods using structured grids – such as transmission-line 
matrix (TLM) methods, or finite-difference (FD) methods 
– produce system matrices, which are not analytical 
functions of the coordinates of the mesh nodes. Therefore, 
strictly speaking, they are not differentiable with respect 

to the shape design parameters. 
Here we present a framework of methodologies for EM-

based sensitivity analysis where analytical derivatives of 
the system matrices are not needed. The analytical pre-
processing is avoided, and the implementation is made 
simple and versatile. Our approaches—being adjoint in 
nature—are efficient, as they compute the system response 
and all its derivatives with at most two system analyses, 
regardless of the number of the design parameters. 

For the first time, we derive a sensitivity formula in 
which perturbations relate to the adjoint problem instead 
of the original problem. This formula has the potential of 
better accuracy especially when highly nonlinear 
responses are of interest. We also develop a central 
adjoint formula which improves the accuracy of the 
estimated sensitivities even further. 

Discussion and comparisons between the presented 
discrete adjoint techniques are given through a variety of 
examples including waveguides and printed structures. In 
addition, conclusions with regard to the accuracy of the 
presented techniques are made through robust 
convergence analysis. 

We start in Section II by giving a brief review of the 
mathematical concepts used in sensitivity analysis. Still 
there, we present our adjoint-based approaches to 
sensitivity analysis with structured-grid solvers. Practical 
examples and comparisons are given in Section III. 
Finally, conclusions are made in Section IV. 

II. MATHEMATICAL FORMULATION 

A. Definitions and Notation 
The analysis stage of a design assembles and solves 

equations, which describe the system. For linear stationary 
systems, 

 ( ) ( )=A p x b p , (1) 

where M M×∈A ^  is the system matrix, 1M×∈x ^  is the 
state-variable vector, and 1M×∈b ^  is the excitation. In 
the case of time-harmonic processes, (1) is complex. We 
denote with p a vector of N shape and/or material design 
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parameters of the system, which may vary, e.g., to obtain 
better system performance, or due to technological or 
environmental factors. We assume that the elements of the 
design-parameter vector are real-valued. These variations 
in general affect the system matrix A, the excitation vector 
b, and, as a result, the solution as well, i.e., x(p). The 
system output is usually described by a vector of complex-
valued responses ( )( )R x p , e.g., the four S-parameters of 
a two-port microwave network. Its overall performance is 
often formulated in terms of a single scalar function, 
( )( )f R p , the response function. 
The purpose of sensitivity analysis is to describe the 

rate of change of the response function with each design 
parameter: 

  , subject to  f∇ =p Ax b , (2) 

where the gradient is defined as a row operator [1]: 

 
1 2

      
N

f f ff
p p p

⎡ ⎤∂ ∂ ∂
∇ = ⎢ ⎥∂ ∂ ∂⎣ ⎦

p " . 

This information is valuable in optimization, modeling, 
tolerance and yield analyses. 

B. Second-order Sensitivity Expression I (AVM-I) 

For a perturbation ip∆  in the ith parameter, (1) 
becomes 

 ( )( )i i i∆ + ∆ = + ∆A+ A x x b b . (3) 

Here, i∆  denotes a variation caused by the perturbation 
ip∆ . Simplifying and rearranging (3), we obtain 

 i i i i i∆ + ∆ ⋅ + ∆ ⋅∆ = ∆A x A x A x b . (4) 

A possible expression for the variation of the state 
variables is 

 ( )1
i i i i

−∆ = ∆ −∆ ⋅ + ∆⎡ ⎤⎣ ⎦x A b A x x  (5) 

assuming that 1−A  exists. 
This variation is needed to find the derivative of the 

response function / idf dp , where f can be a complex 
quantity, R If f jf= + . We assume that f is an analytic 
function of the state variables R Ij= +x x x . In expanded 
form 
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 (6) 

Due to the analyticity of f, the Cauchy-Riemann relations 

 ,   ,   1, ,
R I I R

R I R I

m m m m

f f f f m M
x x x x
∂ ∂ ∂ ∂

= = − =
∂ ∂ ∂ ∂

… , (7) 

hold. Using (7), we write (6) as 

 
i i i

df f df
dp p dp

∂
= +∇ ⋅
∂

x
x , (8) 

where 

 R I R RR R R If f j f f j f∇ = ∇ − ∇ = ∇ + ∇x x x x x , etc., (9) 

and 

 R I

i i i

d d dj
dp dp dp

= +
x x x . (10) 

We approximate (8) as 

 i

i i i

df f f
dp p p

∂ ∆
≈ +∇ ⋅
∂ ∆

x
x  (11) 

and substitute (5). The result is the complex sensitivity 
expression 

 ( )
-

ˆ

1, ,

i iH
i

i i i iAVM I

df f
dp p p p

i N

⎛ ⎞ ⎡ ⎤∂ ∆ ∆
≈ + ⋅ − + ∆⎜ ⎟ ⎢ ⎥∂ ∆ ∆⎝ ⎠ ⎣ ⎦

= …

b Ax x x
, (12) 

where x̂  is the solution of the adjoint system, 

 ˆ [ ]H Hf= ∇xA x . (13) 

Here, AH is the Hermitian of the system matrix A in (1), 
obtained by transposition and conjugation of A. AH is also 
called adjoint to A in analogy with adjoint operators in 
functional space analysis. As per (9), the adjoint 
excitation can be defined as 

 
1 1

[ ] .
R I R I

T
R R R RH

M M

f f f ff j j
x x x x

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
∇ = + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

"x (14) 

If f is a real function [8], then 
 

 
( )ˆ       Re ,   1, ,

i i

i iH
i

i i

df f
dp p

i N
p p

∂
≈ +
∂

⎧ ⎫⎡ ⎤∆ ∆⎪ ⎪⋅ − + ∆ =⎨ ⎬⎢ ⎥∆ ∆⎪ ⎪⎣ ⎦⎩ ⎭
…b Ax x x

 (15) 

where x̂  is the solution of the adjoint problem (13)-(14) 
with Rf f= . Thus, the computational effort involved in 
the sensitivity calculations of a complex analytic response 
function is equivalent to that of a real-valued response 
function. Note that (12) is a generalization of the 
sensitivity expression developed in [6], [7] to the 
complex-variable case. 

If f is complex but not analytic, then its real and 
imaginary parts, fR and fI, have to be treated as two 
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separate response functions, and two separate adjoint 
systems of the form (13)-(14) must be solved. Consider 
for example, a complex response function of the form 

1in kf Z x= = , where inZ  is the input impedance at a 
point excited with a 1-volt and has a corresponding 
current kx . This response is not differentiable at 0kx = . 
If the solution is at or very close to this point, we treat 

{ }ReR in inf R Z= =  and { }ImI in inf X Z= =  as two 
separate real-valued response functions. As a 
consequence, two adjoint systems must be solved. 

Below we summarize the features of the sensitivity 
formulas (12), (15): 
• The adjoint vector x̂  requires one additional system 

analysis (13) (unless LU decomposition is used to solve 
(1), such that the analysis is reduced to forward-
backward substitutions [8]). The adjoint problem (13) is 
perturbation independent. 

• The perturbed original system solutions, i+ ∆x x , 
1, ...,i N=    are perturbation dependent, and thus require 

N additional system analyses. This drawback is 
overcome with suitable approximations as explained 
later. 

• No assumptions are made for the magnitudes of the 
system matrix variations i∆ A , 1, ,i N= … ; the ratio 

/i ip∆ ∆A  does not need to represent the respective 
system matrix derivative with high fidelity, and, in 
general, it should not be considered its finite-difference 
approximation. 

• If, however, i∆ A , 1, ,i N= … , are sufficiently small, 
the second-order terms i i∆ ⋅∆A x  in (4) can be 
neglected, thus, leading to the familiar first-order exact 
sensitivity expression [8]: 

 ˆ H

i i i i

df f d d
dp p dp dp

⎛ ⎞∂
= + ⋅ −⎜ ⎟∂ ⎝ ⎠

b Ax x , 1, ,i N= … . (16) 

The first-order sensitivity expression (16) is applicable 
with numerical solvers utilizing unstructured grids 
because such grids allow for a continuous spectrum of 
values of the design  shape  parameters. This  makes the 
arising system matrices differentiable with respect to the 
shape parameters. However, (16) is not suitable for 
structured-grid algorithms where allowable shape 
perturbations include only discrete on-grid parameter 
values. In this case, the second-order sensitivity 
expression (12) yields better accuracy. 
 Our technique can be summarized in the following 
steps: 
1. Parameterization: specify the set of links L  whose 

corresponding A-coefficients are affected by the 
perturbations ,  1,  ...,  ip i N∆ = . 

2. Original system analysis: (a) solve the original 
system (1); (b) store the incident voltages for all the 
links in the set L ; (c) store the incident voltages in 
the observation domain to be used in the computation 
of the derivatives for the adjoint excitation (14). 

 W L L− ∆

W W+ ∆ LW
L

 W
L L+ ∆

 W W−∆ L

structured grid cell

(a) (b)

(c)  
Fig. 1. Discrete on-grid perturbations of the boundaries: (a) the 
nominal structure; (b) a forward perturbation in W and L; (c) a 
backward perturbation in W and L. 
 
 
3. Adjoint analysis: solve the adjoint problem (13) and 

store x  in the locations that correspond to the set L  
and the nonzero elements of ,  1,  ..., i i N∆ =b . 

4. Approximation of the N perturbed problems: find 
i+ ∆x x  by performing a mapping between the 

solutions of the original problem and the perturbed 
problems for the elements of x  that correspond to 
L . See [7] for more details. 

5. Sensitivities estimation: evaluate the sensitivities 
using (12) for all N parameters. 

C. Second-order Sensitivity Expression II (AVM-II) 

An alternative to (5) is [9] 

 ( )1( )i i i i
−∆ = ∆ ∆ − ∆ ⋅x A+ A b A x . (17) 

Repeating all other steps as above , another possible 
complex sensitivity expression emerges, 

-

ˆ ,  1, , .i iH
i

i i i iAVM II

df f i N
dp p p p

⎛ ⎞ ⎛ ⎞∂ ∆ ∆
≈ + ⋅ − =⎜ ⎟ ⎜ ⎟∂ ∆ ∆⎝ ⎠ ⎝ ⎠

…b Ax x (18) 

This time, the unperturbed original problem solution x is 
used, but the adjoint solution vector ˆix  is perturbation 
dependent since the complex adjoint problem appears as 

 ˆ( ) [ ]H H
i i f+ ∆ = ∇xA A x , 1, ,i N= … . (19) 

Note that neglecting the second-order term in (4) or (17), 
in this case, too, reduces (18) to the first-order sensitivity 
formula (16). 

This technique can be summarized with the same steps 
as those of the AVM-II technique. The only difference is 
that steps 2 (original system analysis) and 3 (adjoint 
system analysis) are swapped, i.e., perturbations take 
place in the adjoint system and not the original system. 
See [9] for more details. 
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Fig. 2. Insertion loss 21| |S  of the filter. 
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The two second-order sensitivity expressions (12) 
and(18), although theoretically equivalent, exhibit some 
differences when implemented in practical algorithms. 
This is mainly due to the self-dependence of the variations 
in the state variable term in (5), i.e., i∆ x  appears in both 
sides of (5) and is hence computed from its own 
approximation. As a result, we expect the computational 
error in this term to increase especially with highly 
nonlinear responses. Notice that, this is not the case in 
(17) [8]. 

In general, neither (3)-(12) nor (18)-(19) are actually 
solved for a perturbation in each of the N parameters. 
Instead, the values of i∆ x  are approximated using a 
simple mapping [6], [7], [9]. The concept is based on the 
perturbation theory [10], and it can be implemented for 
conducting and dielectric parameters. 
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Fig. 5. Derivative of f with respect to W vs. frequency. 

 
 
 
D. Central Approaches with Sensitivity Expressions 

As mentioned earlier, with structured grid solvers, 
allowable perturbations are limited to multiples of the grid 
size in the respective direction. For example, consider the 
structure in Fig. 1. The dark rectangles may be either 
conducting or dielectric objects. The nominal design of 
this structure is shown in Fig. 1 (a) where [   ]TL W=p  is 
the vector of design parameters. AVM-I (12) can be used 
when perturbations in the forward direction [see Fig. 1(b)] 
take place in the original problem. It can also be used 
when perturbations are in the backward direction [see Fig. 
1(c)].  The sensitivity results obtained from the forward 
and backward perturbations are somewhat different 
especially when the response R is a highly nonlinear 
function of p . The same forward, backward and central 
approaches can be applied with the AVM-II (18). 
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Fig. 6. A Comparison between response level sensitivities and 
adjoint-based sensitivities. 
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Fig. 7. Reflection and transmission coefficients of the printed 
filter. 
 
 

Major improvement in the accuracy can be achieved 
using the central adjoint approach [11]. The central 
formula (CAVM-I) combines the solutions of the forward 
and backward sensitivity expressions. Its complex form is 

-

ˆ
2

,   1,..., .
2

i iH

i i iCAVM I

i i i i

i

df f
dp p p

i N
p

+ −

+ + − −

⎧⎛ ⎞ ∂ ∆ + ∆⎪+ ⋅ −⎨⎜ ⎟ ∂ ∆⎪⎝ ⎠ ⎩
⎫∆ + ∆ ⎪ =⎬∆ ⎪⎭

� b bx

A x A x
 (20) 

In (20), the plus sign (+) refers to a perturbation in the 
forward direction and the minus sign (− ) refers to that in 
the backward direction. 

Since we have observed that the computational error is, 
in fact, reduced with AVM-II (18), we consider here the 
same forward/backward procedure and derive a central 
formula for AVM-II (CAVM-II) as well: 
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Fig. 8. Derivative of f with respect to W for the printed filter. 
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Fig. 9. Derivative of f with respect to L for the printed filter. 
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i i i i

i

df f
dp p p

i N
p
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⎛ ⎞ ∂ ∆ + ∆
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∆ + ∆
− ⋅ =

∆

� x b x b

x A x A x

 (21) 

The improvement in the accuracy due to the central 
formulas (20) and (21) is, in some cases, very significant 
over the sensitivity results produced by formulas (12) and 
(18). Note however, that the computational load is the 
same for all four approaches. 

III. EXAMPLES AND COMPARISONS 

In this section, we show sensitivity results computed 
with our adjoint techniques through a variety of different 
structures. The structures are chosen so that: (i) different 
types   of   perturbations   are   possible,   i.e.,   volumetric 
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Fig. 10. The wave impedance of the waveguide vs. frequency at 

5a =  cm. 
 
 
 
perturbations, as in waveguide structures, as well as 
metallic  surface  perturbations  in printed structures; and 
(ii) the selected response is a highly nonlinear function of 
its design parameters. 

The adjoint results are compared with those computed 
using classical finite differences at the level of the 
response or with sensitivity results calculated analytically 
whenever available. 

The   structures   are   simulated using   an in - house 
simulator based on the frequency-domain transmission 
line method (FDTLM) [12]. A uniform discretization grid 
is used, i.e., x y z∆ = ∆ = ∆ = δ  and ip∆ = δ . 

A. Results with AVM-I 

Using AVM-I, we compute response sensitivities for 
the double-resonator filter shown in the inset of Fig. 2 for 
a range of frequencies. The filter is analyzed for its 
dominant mode and thus the problem reduces to two 
dimensions. The computational size of the problem is 
30 1 120 × × δ . The filter is excited with a uniform half 
sine-wave at its input port. The input and output ports are 
matched to absorb the reflected waves. 

The response function is defined as 21| |f S= , where 
21S  is the transmission coefficient for the filter. The 

response is shown in Fig. 2. The vector of design 
parameters is 1 2[     ]TL L W=p , where 2L  and 1L  are the 
lengths of the middle and side septa, respectively. W  is 
the separation between the septa. 
For comparison, the sensitivities are also computed using 
forward finite differences (FFD) directly at the level of the 
response [Figs. 3, 4, and 5]. 
 
 
 

TABLE 1 
COMPARISON BETWEEN THE DERIVATIVES FROM THE 

CONVERGENCE ANALYSIS. 
 

δ  0→  80λ  20λ  10λ  
• analytical -1.244 
• AVM-I -1.2471 -1.2481 -1.2530 -1.2550 
• CAVM-I -1.2470 -1.2480 -1.2510 -1.2520 
• AVM-II -1.2459 -1.2471 -1.2500 -1.2513 
• CAVM-II -1.2455 -1.2460 -1.2481 -1.2501 
 
 

B. Results with AVM-II and Comparisons with AVM-I 

1) Double-resonator Filter 

For the same double-resonator filter shown in Fig. 2, 
we compute the sensitivity results for 21| |f S=  with 
respect to W using AVM-II. The results are compared 
with those produced with AVM-I from Section III.A as 
shown in Fig. 6. For better comparison of the accuracies 
of AVM I and II, we compute a reference sensitivity using 
the second-order central finite differences (CFD) at the 
level of the response. Notice that this is a highly nonlinear 
response function. Even with a relatively fine grid, the 
FFD and CFD sensitivities disagree. Results computed 
with AVM-II show acceptable accuracy compared to the 
reference CFD  and  a noticeable  improvement over those 
computed using AVM-I. 

2) Microstrip Low-pass Filter 

 With this example, the perturbations are of infinitesimal 
surface type. The relative permittivity of the substrate is 

2.2rε = . The total size of the simulated problem is 
43 37 7 × × δ . We excite the structure with a voltage 
source applied uniformly underneath the strip-line at port 
1 in the y-direction. 

We compute the sensitivities for the printed low-pass 
filter shown in the inset of Fig. 7. The response function is 
the squared modulus of the transmission coefficient of the 
filter, i.e., 221| |f S=  [see Fig. 7]. The vector of design 
parameters is [   ]TL W=p , where L  is the length of the 
resonating element and W  is its width.  

The sensitivities are computed with respect to changes 
in the vector of design parameters [   ]TL W=p  using both 
AVM I and II. The computed results are compared with 
first and second-order finite difference estimates at the 
level of the response as shown in Figs. 8 and 9. 
 As seen from this example, the difference between the 
adjoint-based sensitivities is small. This is also true for the 
results from the previous example when the sensitivities 
are computed with respect to changes in 1L  and 2L  [see 
Fig. 2]. It is thus difficult to conclude with certainty which 
approach provides better accuracy. Therefore, more 
detailed comparison based on convergence analysis is 
needed. 
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C. Convergence Analysis 

In this section, we test the accuracy of our adjoint 
approaches presented in Sections II.B to II.D through a 
convergence test, i.e., we compute the sensitivity of a 
response function using each of the four approaches at a 
given design, and compare their accuracy as the grid size 
δ  becomes smaller. For this test to be accurate, we 
choose a response function that is analytically available, 
and therefore, its derivative can be calculated analytically. 
We consider the wave impedance ( wgf Z= ) of a hollow 
rectangular waveguide [see the inset of Fig. 10]. The 
computed adjoint derivatives are compared to the 
analytical derivative. 
 The response is calculated analytically using the well-
known formula for wgZ  as a function of the waveguide 
cross-section dimensions and the frequency [13]. The 
response function is also computed using our FDTLM 
simulator as shown in Fig. 10. 

The convergence analysis is executed at a given design 
point in the highly nonlinear region of the response 
function [see Fig. 10]. For example, consider the design 
where the waveguide width is 5a =  cm and the frequency 
is 3.05 GHz. For this design, the four adjoint sensitivities 
are computed for different uniform discretization grid of 
the TLM simulator, i.e., at 10δ = λ  to 80δ = λ , where 
λ  is the wavelength. The derivatives for a finer grid at 

0δ →  are estimated using Matlab’s [14] extrapolating 
functions. The results are given in Table 1. 
 The results show that all four approaches tend to 
converge to the analytical value of the derivative as the 
grid size δ  becomes finer. This is due to the dependence 
of the field approximation in the perturbed problems [7] 
on the grid size. It can also be observed that the results 
produced with CAVM-II give the best outcome for any 
grid size compared to the other results. The CAVM-II 
results also show a smoother convergence than the other 
approaches. Our interpretation to this outcome is: (i) the 
numerical error produced by the sensitivity expression II 
(18) is less than that of sensitivity expression I (12); and 
(ii) the CAVM, in general, preserves the advantages of the 
second-order term i i∆ ⋅∆A x  since it takes into account 
both forward and backward perturbations in the design 
parameter. With the CAVM-II, we merge the above 
advantages and obtain the best results. 

It is also observed that the difference between the 
AVM-I and CAVM-I derivatives at finer grid sizes is 
small. However, we would like to point out that larger 
differences are expected with responses that are functions 
of shape design parameters in which the electromagnetic 
field is singular at the locations of the perturbed 
boundaries [11]. There are no field singularities in our 
waveguide example as the field smoothly decays to zero at 
the edge of the electric conducting walls of the 
waveguide. Therefore, the field variations between the 
approximated perturbed solution and that of the original 

unperturbed problem are not very different. Hence, the 
difference in the corresponding derivatives is not so 
pronounced. 

IV. CONCLUSIONS 

We present a framework of approaches for feasible and 
versatile adjoint-based sensitivity analysis with frequency-
domain structured-grid electromagnetic solvers. For the 
first time, we present two new adjoint-based approaches 
that further improve the accuracy of the estimated 
sensitivities. All approaches are easy to implement with 
existing solvers and do not require solver-dependent 
analytical preprocessing. They provide cheap and accurate 
gradient information, which is valuable in a number of 
CAD applications such as optimization, modeling, and 
tolerance analysis. 

We also test and compare the accuracy of our presented 
approaches through the computed sensitivities of a variety 
of structures and through robust convergence analysis. 
Conclusions are made based on comparisons with finite 
difference response-level sensitivities and with analytical 
derivatives. 
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