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ABSTRACT. The structure and the properties of the FE-
MAX package are discussed. The FEMAX finite-element
package is an efficient and highly accurate package
especially designed for computing three-dimensional
transient as well as time-harmonic electromagnetic fields
in arbitrarily inhomogeneous, {an)isotropic media. The
most unique features of the FEMAX package are that
1) the electric field strength is computed directly, i.e.
without the intermediate use of (vector) potentials, 2}
when inhomogeneities are encountered in the domain
of computation, the package automatically chooses edge
elements to ensure that all local continuity conditions can
be met, nodal elements are used elsewhere, and 3) that
the electromagnetic compatibility relations are taken into
account in the formulation of the finite-element method
used, thus avoiding spurious solutions. These features
are included in the package in such a way that optimum
results are obtained both in regard to computational
efficiency (storage and time) and in regard to the desired
accuracy.

1 INTRODUCTION

When solving the electromagnetic field equations in a
three-dimensional domain containing inhomogeneous me-
dia by using finite elements some important issues should
be dealt with that are not often encountered in finite-
element methods for other sets of partial differential equa-
tions.

The first important difference between the electromag-
netic field equations and other sets of partial differential
equations is that the field quantities in the former (the
electric and the magnetic field strength) show jump dis-
continuities at interfaces between different media. This
makes it necessary to use a computational technique that
accounts for the continuity conditions of the fields across
interfaces where the constitutive coeflicients jump.

The second issue to be resolved lies in the fact that
finite-elements methods for electromagnetic field prob-
lems often yield unwanted (spurious) solutions. Those
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spurious solutions are due to the fact that some of the
properties of the electromagnetic field, the electromag-
netic compatibility relations [1, 2], are not represented
properly in the finite-element method used.

1.1 Interfaces

A popular method to simplify the modeling of the
continuity conditions at interfaces is to introduce electric
and/or magnetic (vector) potentials [3] that are com-
tinuous along those interfaces. When using potentials
in a numerical method, the finite-element method for
instance, they have the disadvantage of yielding rela-
tively inaccurate results for physical quantities like the
electric or magnetic field strength. This is caused by
the fact that the latter quantities can only be obtained
by performing differentiations on the numerical results
for the potentials which causes the loss of one order of
accuracy. Obviously, much better convergence properties
are obtained when numerical differentiations are avoided
by formulating the problem directly in terms of the
electric and/or the magnetic field strengths. When
doing so, the continuity conditions along interfaces can,
in principle, be dealt with by subdividing the problem
space into a number of subdomains over which the
constitutive coeflicients are continuous functions of the
spatial coordinates. The boundary conditions at the
interfaces between those subdomains are imposed sepa-
rately [4, 5]. This technique, however, is very difficult
to implement for arbitrary configurations and yields
conflicting conditions at nodes where the vector normal
to the interfaces is not unique. When the electromagnetic
field is computed in terms of the electric and/or the
magnetic field strength, the problem of modeling fields
in inhomogenecus media can be solved at the element
level by using edge elements. Edge elements, however,
are known to be less efficient than the commonly used
nodal elements [6]. In [7} a method is described that
virtually eliminates the computational disadvantage of
edge elements [6] by using them only for modeling the



field along discontinuities and near reentrant corners,
and by using nodal elements everywhere else. With
this " mixed” method the corresponding program decides
locally, for each combination of two adjacent subdomains
in the discretized domain of computation, which type of
element will be used. For regions in which the properties
of the media are continuous functions of the spatial
variables and for regions with "weak” discontinuities
(i.e. discontinuities along which ignoring the jump in the
normal component of the field strength would not yield
unacceptably large errors) in electromagnetic properties
between subdomains it will use nodal elements, for
"large” differences it will use edge elements. Thus the
method of modeling the field is automatically adapted to
the problem at hand and all ”strong” discontinuities are
automatically accounted for. The degree of discontinuity
above which edge elements are used is user-defined and
has to be chosen in accordance with the final accuracy
aimed at. In [8] a finite element code for time-harmonic
electromagnetic fields was described that was designed
according to the method described above.

1.2 Spurious solutions

Spurious solutions can be eliminated by taking into
account ali electromagnetic compatibility in the formu-
lation of the finite-element method [1]. In this way the
method used will accurately model the electromagnetic
field equations, together with all its relevant propertles
and spurious solutions are avoided.

In the present paper the version of the FEMAX finite-
element code is deseribed that was especially designed
for computing transient electric fields in three spatial
dimensions. It was developed on the basis of the above
ideas.

2NODAL ELEMENTS AND EDGE ELEMENTS

As was explained above, the FEMAX package uses a
combination of nodal and edge elements. For topolog-
ical reasons [9] the geometrical domain D, in which the
fipite-element method is applied, is subdivided into tetra-
hedra that together span the polyhedron appreximating
D. Consequently, the nodal and edge elements to be used
will be defined on tetrahedra. The position vectors of the
vertices of a particular tetrahedron 7 are {rg,71,72, 73},
the outwardly directed vectorial areas of the faces of 7
are {Aqg, A1, A2, A3} and the volume of 7 is denoted by
V. Let r; be the position vector of the barycenter of
7T, then the linear functions ¢;(r) that equal unity when
=11 +yiz + zi3 = r;(i = 0,1, 2, 3) and are zero at the
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remaining three vertices of 7 can be written as

$i(r) =1/4- A:/3V. 1)
For obtaining consistency in the local degree of approx-
imation we use consistently linear expansion functions.
Therefore, the local nodal expansion functions W(N) (r)

in T are taken as

{r—rp)-

M) = di(r)izi = 0,1,2,3 and j = 1,2,3,

2)
and the local edge expansion functions WE? (r)in T are
taken as
E . L,
W&,j)(r) = —¢i(r)ai;A;/3V, 1,7 =0,1,2,3, i # 3, (3)
where a; ; = |r; — ;| is used for dimensioning and scaling
purposes. When » € T, the electric field strength E is
locally expanded in terms of a combination of nodal and
edge expansion functions through

Z Y e tyWP (),

=0 3

E(r, (4)

where e; ;(t) are the unknown, time-dependent, field ex-
pansion coefficients and where the limits of j depend on
the type of expansion used (see (2) and {3)). Note that we
have, in each tetrahedron, the possibility to use arbitrary
combinations of nodal and edge expansion functions. The
actual choice between them is made by the program, it
depends on the degree of inhomogeneity in the material
properties in the immediate vicinity of 7. Nodal expan-
sion coefficients are the Cartesian components of the field
at the vertices of the tetrahedra (the nodes of the mesh).
Edge expansion coefficients are the oriented projections of
the field at the edges taken near the ends of those edges.
We note that (4) always contains 12 terms. For a dis-
cussion of the properties of local expansion functions the
reader is referred to [6).

We now introduce global expansion functions as the
sum of all local expansion functions that are related to
the same expansion coeflicient. The support of the global
nodal expansion functions is the simplicial star [9] of the
node to which they are related (the simplicial star of a
node is the union of all tetrahedra that have that node
in common). The support of the global edge expansion
functions is the simplicial star of the edge to which
they are related (the simplicial star of an edge is the
union of all tetrahedra that have that edge in common}.
Since the support of global nodal expansion functions is
much larger than the support of global edge expansion
functions, the former are computationally more efficient
than the latter and the former should be used whenever



the use of the latter is not necessary because of the local
degree of inhomogeneity. For an illustration the reader is
referred to Fig. 2 in [8). By using the proper combination
of nodal and edge expansion functions, optimum results
are obtained both in regard to accuracy and in regard to
computational efficiency [6, 8].

3 THE FINITE-ELEMENT FORMULATION
3.1 The wave equation

Eliminating the magnetic field strength H from Max-
well’s equations we obtain

Oje E+80-E+Vx(u ' VxE)=

—GJ™P =V x (u7t - K'™P), (5)
where J'™P = J™P(r ¢} and K™ = K'™P(r,t) denote
known impressed sources of electrical and magnetic cur-
rent that are defined inside the domain of computation
only, and where € = ¢(r), o = o(r) and u = u(r)
denote the permittivity, the conductivity and the perme-
ability tensor, respectively. The wave equation is sup-
plemented with initial conditions E{r,ty) and H(r,tg).
In the package the domain of computation is subdivided
in tetrahedra. Now, substituting the expansion (4) for
the electric field strength in (5), a system of equations
in the expansion coefficients is obtained by applying the
method of weighted residuals. The set of weighting func-
tions {Wj(,l:'q'E) (r)} that is used is the same as the set of
expansion functions. Using an integration by parts and
adding the resulting equations over all tetrahedra, we ob-
tain a system of coupled ordinary differential equations
for {e; ;(t)} that can be written as

Z(Bfei,j)f Wi € Wi;dV
D

4

+Z(8¢e,-,,-)/ Wp'q o g Wi,,-dV
D
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+> e /;)(V XWoo) - u™t-(Vx W, ;)dV =
i

O Wi (nx H" )dA

Dy

- / W - JPAV
D
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Figure 1: The domain of computation D.

- fp (VxW,,) -ut- K™PdV Vp,q, (6)

where 8Dy, see Fig. 1, denotes the part of outer bound-
ary of the domain of computation D on which the tan-
gential components of the external magnetic field strength
H*™" = H"(r,t) are prescribed and where n denotes the
unit vector along the outward normal to D. The tan-
gential components of the external electric field stength
E®' = E®*(r t) are prescribed on #Dg, where 8D =
O0Dg U 9Dy with D N8Py = 0. External fields are
defined outside the domain of computation only. For de-
riving (6) we have used the continuity of the tangential
components of the magnetic field strength over all inter-
nal interfaces.

3.2 The compatibility relations

For eliminating all spurious solutions (6) must be aug-
mented with the relevant electromagnetic compatibility
relations [1]. Compatibility relations are properties of a
field that are direct consequences of the field equations
and that should be satisfied to allow the equations to
have a solution. They were first introduced by Love [10]
for elastodynamics and are also known in fluid dynamics
[11). For the electric fleld strength, which is the fun-
damental unknown in FEMAX, these compatibility rela-
tions are the volume divergence condition

V.-(e-E4+o-E)=-—V-J7 (7)

the surface divergence condition at interfaces

v-(Be-E+o E)+v-J™ continuous across Z, (8)

where v denotes the unit vector along the normal to the
interface Z, and the condition applying to the normal
component of the electric flux density at the outer bound-
ary 0Dy



n-(6ie-E+ea-E)=mn-(Vx H* - J™) on 8Dy. (9)

Each of these equations is added to (6) in a weighted
sense. In this way the wave equation, together with its
properties, is modelled in a weighted sense and spurious
solutions are avoided.

Adding the weighted form of (7)-(9) to (6), a system
of coupled ordinary differential equations for {e; ;(t)}
is obtained that is solved in a standard manner using
either single- [12] or two-step [13] integration methods.
In practice the use of two-step methods has turned out
to be preferable.

4 TIME-HARMONIC FIELDS IN THE TIME
DOMAIN

The FEMAX code allows time-harmonic fields to be com-
puted in the time domain. For maximum efliciency a tran-
sient is used with a transient period 0 <t < {;;. During
this period the known right-hand side vector, representing
the time harmonic excitation, is multiplied by a continu-
ous function fi(t) that generates a smooth transient from
zero to steady state. For fir we use a function of the type

0, -0 <t<0,

Jer 0 <t <y, (10)

(2 - sin(£$)) sin(355),

1, ty <t < 00,
other transients being available. Using fi; we obtain,
at t = #;,, an approximation of the time-harmonic so-
lution with a relatively small error term and steady state
is achieved very efficiently. In most cases a value of {;, in
the range 5T <ty < 10T, where T denotes the period in
time of the time-harmonic sources, turns out to yield an
optimum computational efficiency. Obviously the opti-
mum choice for ¢;; depends both on the problem at hand
(larger domains of computation requiring longer transient
times) and on the accuracy requirements. In general it
can be said that t;; should preferably be chosen such that
the solution at t = ¢, is already accurate enough to be
used as a steady state solution and that no subsequent
time stepping is required to obtain steady state. For fur-
ther comments on this procedure the reader is referred to
[14].

Computing time-harmonic fields in the time domain
is computationally very attractive as compared with
using frequency domain methods because of the fact it
is usually very difficult to solve the system of equations
obtained using the latter method which tends to generate
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ill conditioned system matrices that usually are not
positive definite. Experimentally we have found that for
"large” problems (>10.000 unknowns) the time domain
approach to solving time-harmonic problems is always
more efficient and more accurate than the time-harmonic
approach. The advantage of the time-domain, transient,
approach over the time-harmonic approach increases
with the number of unknowns and with the temporal fre-
quency {for a constant size of the domain of computation).

5 ABSORBING BOUNDARY CONDITIONS

The FEMAX package contains simple local absorbing
boundary conditions that model the infinite homoge-
neous surroundings of the domain of computation. These
boundary conditions assume the field locally to consist
of a plane wave travelling in a specific direction, usunally
in the direction that is normal to the outer boundary,
out of the domain of computation. Absorbing boundary
conditions of this type can be used for problems in which
all sources of the electromagnetic field are located inside
the domain of computation.

5.1 Inhomogeneous absorbing boundary condi-
tions

In many practical problems, the field is excited by sources
that are located outside the domain of computation. As
an example one might think of the scattering of a plane
wave by an obstacle. In cases like this we have an inci-
dent field { E'°°, H'™}, which is the field in the absence
of the scatterer, a total field {E, H}, and a scattered
field { E°°®°, H****}, which is defined as the difference be-
tween the total field and the incident field. Absorbing
boundary conditions apply to scattered fields, they can
be augmented to take into account the incident field in
the following manner. Since absorbing boundary condi-
tions are linear expressions in terms of the scattered field
they can formally be written as a linear operator of the

type

R(E*™, H**) = 0. (11)
Adding the trivial identity
R(Einc‘ Hinc) — R(Einc’Hinc) (12)
to {11) we obtain
R(E,H) = R(E"™, H™), (13)

which relation is an inhomogeneous absorbing boundary
condition that can be applied to the total field inside the
domain of computation and that takes into account the



incident field as a contribution to the known excitation
vector. Note that (13) applies to all absorbing boundary
conditions that can be written as (11), from very simple
local conditions to highly sophisticated global ones.

6 THE PROPERTIES OF THE FEMAX PACK-
AGE

The FEMAX package for computing time-domain elec-
tromagnetic fields in three spatial dimensions has the fol-
lowing properties and/or options:

¢ The electric field strength is used as the fundamental
unknown quantity that will be approximated using
consistently linear expansion functions.

Because of including all relevant electromagnetic
compatibility relations in the formulation, the results
are free of spurious solutions.

In the interior of the domain of computation, the user
can specify arbitrary distributions of electromagnetic
medium properties (permittivity, conductivity and
permeability), the media may be anisotropic. It is
also possible to specify specific density distributions
for use in SAR computations.

The package uses edge elements along discontinu-
ities and nodal elements in regions with continuously
varying medium properties. The contrast in prop-
erties of the media in two adjacent domains below
which the medium is treated as having continuously
varying properties is specified by the user.

For a given distribution of mediwmn properties and
a given finite-element mesh, which has to be chosen
fine enough to satisfy the accuracy requirements, the
package automatically determines the numerically
optimum distribution of the expansion functions that
allow the solution to satisfy the user-defined local ac-
curacy requirements.

In the interior of the domain of computation, the
user can prescribe arbitrary initial value distribu-
tions of the field strength as well as arbitrary time-
dependent volume source distributions of imposed
electric and/or magnetic current.

The distributions of the medium properties as well
as the volume source distributions can be specified
either by supplying user-written subroutines for gen-
erating those quantities {in FORTRAN-77) or, much
simpler, by using members of the collection of stan-
dard subdomains with standard distributions that
are available in the package.
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At the outer boundary of the domain of computa-
tion, the user can prescribe arbitrary distributions
of external electromagnetic fields. Local impedance
boundary conditions for modeling lossy boundaries
and (in)homogeneous absorbing boundary conditions
for modeling radiation into an unbounded homoge-
neous medium surrounding the domain of computa-
tion are also available.

Efficient sparse-matrix methods and different types
of preconditioning are available for solving the sys-
tem of algebraic equations.

Field values and derived quantities can be computed
at arbitrary collections of user-specified points in the
configuration and as a function of time.

FEMAX uses the SEPRAN finite-element package
[18] for a number of general finite-element tasks like
the generation of the mesh and the assembly of the
system matrix from the FEMAX elements.

A number of programs is available for post-processing
data prepared in FEMAXT. They can be used inter-
actively for previewing and for making contour plots
(FEMAXPT and FEMAXPF} of field values, and of
quantities that can be expressed in terms of the field
values and material properties. FEMAXH is used for
making plots of the evolution in time of fields values
at specified locations. Use is made of either the NAG
Graphics Library [15] or MATLAB [16].

Y NUMERICAL RESULTS AND COMPUTA-
TIONAL REQUIREMENTS

Early results obtained by using the FEMAX package have
been presented in [14, 17]. The results presented in those
papers mainly served to illustrate the accuracy and the
convergence properties of the package on a simple model
problem. As a more practical example we shall now com-
pute the specific absorption rate of a field in a mathemat-
ical model of a human head (a numerical phantom). The
field is generated by a dipole antenna that is located near
this phantom. A quarter part of the configuration is de-
picted in Fig. 2. The frequency is taken as f=8900MHz,
which is inside the frequency range used for the Euro-

- pean GSM (Global System for Mobile Communication)

network range. The phantom has a cubic shape, it con-
sists of a cubic region -0.095m < z,¥y,z < 0.095m filled
with brain tissue (g,=43, o =0.835/m, p =1050kg/m?).
The region outside the above region, but inside the cube
-0.1m <€ 7,7,z < 0.1m has properties for modelling the
skull (e,=17, ¢ =0.258/m, p =1200kg/m?). Outside this
region the properties of vacuum are assumed.
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Figure 2: The numerical phantom

The antenna is modelled by a A/2 dipole of length
0.166m, having its center at {z,y,z) = (0.115,0,0) and
its orientation parallel to the z-axis.

The problem was solved under the condition that edge
elements are used when the relative contrast C, in the nu-
merical values of (r)+ jwe.(r)ep in two adjacent tetrahe-
dra exceeds 0.1 (with this choice, edge elements are used
along all interfaces between the different domains), nodal
elements are used otherwise. By using the symmetry of
the configuration with respect to the planes y = 0 and
z = 0 we can solve the problem for positive y and z values
only, using the condition Et(r,t) = i3 x E(r,f) = 0 (the
subscript T refers to the tangential components) at the
plane z = 0 and the condition Hr(r,t) = iax H(r,t) =0
at the plane y = 0. The domain of computation —0.11 <
z<020<y<0.16,0 < z £ 0.16 is surrounded by
a mathematical boundary on which absorbing boundary
conditions are applied. For the problem at hand the solu-
tion is expected to have a ”singularity” in the immediate
vicinity of the dipole antenna. Therefore we have used a
non-uniform mesh that has its highest density near this
antenna. A side view of this mesh, consisting of 144000
tetrahedra, is given in Fig. 3. Note that the mesh is
such that the interfaces between different media coincide
with interfaces between tetrahedra, in this way we have
avoided staircasing in the modeling of the material prop-
erties.

For this configuration the Specific Absorption Rate
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(SAR in W/kg) is required. In Fig. 4 the normalized
SAR distribution is depicted for a cross-section in the
plane y=0. The normalization was carried out such that
the maximum SAR value anywhere in the configuration
was set to 0dB. In Fig. 5 the SAR distribution is de-
picted along the line (-0.1 <z < 0.1,y =0,z = 0), the
same normalization was used. The almost linear decay of
the SAR (dB} values with decreasing z-values reflects the
exponential decay of the field in the highly lossy tissues.
The "roughness” of the result in Fig. 5 is due to the fact
that a relatively coarse mesh had to be used away from
the antenna. For z < 0.05 about 5 elements per wave-
length were used, near the antenna a much denser mesh
was used and, consequently, much smoother results were
obtained for z >0.05.
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Fig. 3. The mesh used



The computational effort for solving a problem follows
from the effort required for generating the system matri-
ces, the effort for solving the equations each time step
and the number of time steps. Since the matrices are
stored in compact mode (ignoring all zero’s) the solution
of the system of equations can be obtained only by using
iterative methods because of which the solution time de-
pends on the number of iterations required. The actual
number of iterations for solving a problem iteratively each
time step is relatively small and depends on the type of
preconditioning available for the problem at hand. Typ-
ically 2 - 20 iterations are required for solving a system
of equations with 100,000 unknowns. The computational
effort increases only slightly faster than linear with the
number of unknowns and linear with the number of time
steps required. For large problems with many time steps
the computational effort for generating the system matri-
ces is negligible in comparison to the computational effort
required for the integration of the system of differential
equations along the time axis.
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Fig. 4. The normalized SAR distribution in the plane
y=0in dB.

For the problem at hand the total number of un-
knowns amounted to 114085, 3082 of them being
prescribed through essential boundary conditions. Each
of the three matrices contained 4116764 non-zero ele-
ments. The time-harmonic problem was solved with a
transient of 10 periods in time, with 20 time steps on
each period a total of 1055 iterations were required to
solve the problem. All computations were carried out on
a HP 9000-735/125 workstation, with 400Mbyte main
memory space. The total computation time for obtaining
the solution amounted to about 100 min.
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8 THE PACKAGE

The FEMAX finite-element package consists of approxi-
mately 250 subroutines. It uses the SEPRAN (18] finite
element package as a general finite-element background
package that carries out tasks like the generation of the
mesh, the assembly of the matrices and vectors, the so-
lution of the systems of algebraic equations and the data
management. Either the NAG Graphics Library [15]
or MATLAB [16] is used for postprocessing. The stor-
age requirements for the executable are 6.5Mbytes. FE-
MAX runs on both VAX-VMS and UNIX platforms. The
FEMAX source code, together with an extensive User’s
Guide, are commercially available. The SEPRAN source
code should be acquired separately.

The time-harmonic version of the FEMAX packages
[8] is also commercially available. A FEMAX package for
static and stationary electric or magnetic fields based on
the theory presented in [2] is presently under development
[19].

PHANTOHO2. Ri=( 0.106¢00. 0.0DE+hd. #.00B000), R2=(-0,10E+00, 0. 00€+00, 0,00E+06)

SAR n a8

0.000 -0.059 -0.160

0.9050

6.100

Fig. 5. The normalized SAR distribution along the
line y=0,z=0in dB.

9 CONCLUSION
The FEMAX finite-element package was described. This

package was especially designed for computing transient
as well as time-harmonic electromagnetic fields in three-



dimensional configurations containing inhomogeneous
and (an)isotropic media. Because of formulating the
problem in terms of the electric field strength directly, all
problems that are inherent to potential formulations are
avoided. The modeling of the conditions along internal
interfaces in the configuration is performed automatically
by the package, and the user can influence this process
by prescribing the minimum degree of discontinuity C,
for which the discontinuity in the medium properties
should be modelled to obtain the required accuracy.
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