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Abstract - In this paper, a design of an unequal 
split Wilkinson power divider (WPD), with high 
power split ratio, using non-uniform transmission 
lines (NTLs) is presented. The design is based on 
using NTLs in each branch of the divider instead 
of the conventional uniform ones. Besides the 
achievement of high power split ratio, the size of 
the designed WPD is reduced. The design 
procedure is presented for arbitrary design 
frequency and arbitrary power split ratio. For 
verification purposes, a 10:1 WPD is designed and 
fabricated. Good isolation between the output 
ports, input/output ports matching, and 
transmission responses are achieved at the design 
frequency. The experimental and full-wave 
simulation results show the validity of the 
designed NTL-WPD. Compared to the 
conventional design, it is noticed that the 
proposed divider is more likely suitable for 
narrowband applications.  
 
Index Terms -Non-uniform transmission lines, 
size reduction, unequal split, Wilkinson power 
divider.  
 
 
 

I. INTRODUCTION 
     Recently, the design of unequal split Wilkinson 
power dividers (WPDs) with high power split 
ratio has attracted much attention and interest. 
Several different structures have been proposed in 
the literature to overcome the high characteristic 
impedance microstrip transmission line required 
in the WPD with high split ratio. Many papers 
presented the design of defected ground structures 
(DGS) and its application in WPDs and branch 
line couplers [1-6]. In [7], a grooved substrate was 
proposed for the design of unequal split WPD. 
The grooves were applied along the strips which 
required high characteristic impedance which may 
increase the degree of complexity in fabrication 
process. A CPW with electromagnetic bandgap 
was proposed in [8] for designing a transmission 
line with high characteristic impedance, which 
was then applied to the design of unequal split 
WPDs. Nevertheless, the design and realization 
are even more complex. A 10:1 unequal split 
WPD using coupled lines with two shorts was 
presented in [9]. The very thin microstrip 
transmission line was mitigated using a coupled 
line with two shorted ends.  

In this paper, based on the simple WPD 
topology proposed in [10], a compact unequal 
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split WPD with high split ratio is designed and 
fabricated using non-uniform transmission lines 
(NTLs) theory [11]. The same theory was used in 
[12] and [13] to design miniaturized dual-
frequency WPD and multi-frequency Bagley 
polygon divider (BPD), respectively. Recently, 
equivalent circuits for NTLs were proposed in 
[14].  
 

II. DESIGN OF COMPACT NTLs [11] 
     In this section, the theory of designing compact 
NTLs is briefly presented. Figure 1(a) shows a 
typical uniform transmission line with a length, 
characteristic impedance and propagation constant 
of d0, Z0 and 0, respectively, with an ABCD 
parameters matrix [15]: 
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where  = 0d0 is the electrical length of the 
desired uniform transmission line. Figure 1 
represents an equivalent non-uniform transmission 
line of length d, with varying characteristic 
impedance Z(z) and propagation constant (z). 
The NTL is designed so that its ABCD parameters 
at a frequency f are equal to those of the uniform 
transmission line. Moreover, compactness is 
achieved by choosing the length d to be smaller 
than d0. 
     The general method to design an optimal 
reduced-length NTLs proposed in [11] is adopted 
here. First, the NTL is subdivided into K uniform 
electrically short segments with length of z  as 
follows: 

                       
d c

z
K f

    .                      (2) 

The ABCD parameters of the whole NTL are 
obtained by multiplying the ABCD parameters of 
each section as follows: 
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where the ABCD parameters of the thi  segment 
are: 
                       cosi iA D    ,                (4.a) 

       2 0.5 0.5 sin ,i iB Z i z C jZ i z       

1, 2,.....,i K .                     (4.b) 
 

 
Fig. 1. A typical uniform transmission line (UTL) 
versus an equivalent non-uniform transmission 
line (NTL). 
 
 
The electrical length of each segment is:                         

               2 2
z f zeffc

 
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
     .          (5) 

Then, the following truncated Fourier series 
expansion for the normalized characteristic 
impedance     0/Z z Z z Z  is considered:              
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So, an optimum designed compact length NTL 
has to have the ABCD parameters as close as 
possible to the ABCD parameters of the desired 
uniform transmission line at a specific frequency. 
Therefore, the optimum values of the Fourier 
coefficients 'nC s  can be obtained through 
minimizing the following error function [11]: 
 

2 2 2 21 2 2
0 0 0 0 0 04Error A A Z B B Z C C D D

 
 
 

        .  (7) 

 
Also, this error function should be restricted by 
some constraints such as reasonable fabrication 
and physical matching, as follows:                             
                           maxminZ Z z Z  ,           (8.a) 

   0 1Z Z d  .                    (8.b) 

z 
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One should be careful when dealing with such 
constraints to get the desired performance. The 
first constraint given in (8.a) guarantees that the 
resulting non-uniform microstrip line is not too 
wide, by choosing an appropriate value of minZ , 
and not too thin, by choosing an appropriate value 
of maxZ , since the microstrip line width is 
inversely proportional to its characteristic 
impedance. The second constraint given in (8.b) 
guarantees that the widths of the two ends of the 
resulting non-uniform transmission line will be 
equal to the width of the uniform ones for 
matching purposes, and for this constraint to be 
achieved, the sum of the Fourier coefficients must 
equal to zero. It is worth mentioning here that the 
Fourier coefficients are bounded between -1 and 
1, i.e., ( 1 1nC   ). 

So, the goal is to find the Fourier coefficients 
values (Cn’s) that give a non-uniform transmission 
line that has its ABCD parameters approximately 
equal to those of the uniform transmission line by 
minimizing the error function in (7) at a specific 
design frequency (with the constraints given in 
(8)). To solve this constrained minimization 
problem, the MATLAB function “fmincon.m” is 
utilized. 
 
III. DESIGN OF UNEQUAL SPLIT WPD 

     Figure 2 shows the schematic of the unequal 
split WPD that was proposed in [10]. This WPD 
topology has the merits of having a simple layout, 
with the dividing ratio k depending on the 
electrical lengths of its arms rather than the 
impedances values. In other words, the power-
dividing ratio k is a function of  (< /2): 
 

                       
1 2

cos 3

P
k

P
  .          (9) 

 
     To achieve a 10:1 dividing ratio, one can obtain 
  from (9) which gives  =71.57o. So, for a 10:1 
WPD operating at 1 GHz and having terminating 
impedances of Z0= 50 , the electrical lengths of 
the uniform transmission lines TL1, TL2 and TL3 
are 161.57o, 90o, and 71.57o, respectively, and will 
share the same characteristic impedance of 

02 70.71Z   . For a design frequency of 1 

GHz, and considering an FR-4 substrate having a 
dielectric constant r of 4.6 and a substrate height h 
of 1.6 mm, the above electrical lengths can be 
translated into physical lengths of 74.35 mm, 41.41 
mm, and 32.94 mm, for the first, second and third 
uniform transmission lines, respectively. These 
lengths occupy a large circuit area which will be 
reduced using NTLs in the next section. 
 

 
Fig. 2. An unequal split WPD proposed in [10]. 
 
IV. DESIGN OF COMPACT UNEQUAL 

SPLIT NTLs-WPD 
     An unequal split NTLs-WPD can be realized 
by substituting each uniform TL in Figure 2 by its 
equivalent NTL. So, for the uniform transmission 
line sections of lengths d01= 74.35 mm, d02= 41.41 
mm and d03= 32.94 mm, compact NTLs of lengths 
d1= 50 mm, d2= 28 mm, d3= 25 mm, respectively, 
have been chosen. The optimization variables K 
and N are chosen as 50 and 10, respectively. Also, 
Z1(z) is bounded between  10.216 1.8( )Z z  , 
whereas Z2(z) is bounded between 

 2
0.216 1.7( )Z z   and Z3(z) is bounded 

between  3
0.216 1.7( )Z z  . Figure 3 shows 

the resulting impedances
1
( )Z z ,

2
( )Z z , and 

3
( )Z z . The obtained impedances shown in Figure 

3 are translated into microstrip line widths 
variation, as presented in Figure 4. This figure 
shows that the NTL sections widths are bounded 
as follows: 

10.300 15.2( ( ) )mm W mmz   

20.368 15.4( ( ) )mm W mmz   

30.335 15.2( ( ) )mm W mmz   
Also, the resulting Fourier coefficients and the 
error values are listed in Table 1. 
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Fig. 3. The normalized impedances for (a)  1 zZ , 

(b)  2Z z , and (c)  3Z z .  
 

For comparison purposes, Figure 5 represents 
the layout of the conventional 10:1 WPD along 
with the layout of the proposed NTLs 10:1 WPD. 
A size reduction of almost 33% is achieved with 
the use of the NTLs. 
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Fig. 4. The variation of the microstrip widths for 
(a) 1( )W z , (b) 2 ( )W z , and (c) 3 ( )zW . 

V. SIMULATIONS AND 
MEASURMENTS 

     The designed 10:1 NTLs-WPD, is first, 
analyzed using Ansoft Designer [16] (circuit 
model) by dividing the NTL arms into very short 
uniform microstrip lines (i.e., a stepped structure 

with piecewise constant impedance segments). 
Then, the designed WPD (using the smooth 
structure as is) is simulated using the full-wave 
simulators HFSS [16], and IE3D [17]. Moreover, 
the NTLs-WPD is fabricated and measured using 
an Anritsu 37369C network analyzer. 
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Table 1: The values of the Fourier coefficients for the optimized NTL sections

 

 
Fig. 5. The conventional WPD layout vs. the 
proposed NTLs-WPD layout. The 100  lumped 
resistor is not shown in this layout. 
 
     Figures 6-8 show the matching parameters at 
the input/output ports: S11, S22, and S33, 
respectively. Ansoft Designer result shows that 
the input port matching S11 is around -37; 
meanwhile, S11 obtained using IE3D and HFSS 
equals -33 dB around the design frequency. The 
measured matching parameter S11 is -27 dB 
around 0.94 GHz.  
     Figures 7 and 8 show good matching at the 
output ports which is below -20 dB at the design 
frequency. The measurement results equal -28 dB 
around 0.9 GHz and -18.5 dB at 0.85 GHz for S22 
and S33, respectively. The differences between the 
experimental results and the simulation ones could 
be due to the use of carbon resistor, as well as 
fabrication process, soldering, and measurement 
errors. Figure 9 shows the isolation parameter S23.  

 
The simulation and measurement results for S23 
are accepted at the design frequency.  

Figures 10 and 11 show the transmission 
parameters S21 and S31, respectively. As expected, 
Ansoft Designer results are very close to the ideal 
ones, i.e., S21 close to -0.41 dB and S31 close to -
10.41 dB at the design frequency. Full-wave 
simulation results and experimental ones are in 
good agreement, and show an acceptable behavior 
around the design frequency (keeping in mind that 
the loss tangent of the FR-4 substrate used in our 
design is 0.02).  
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Fig. 6. Matching parameter at port 1. 
 

To demonstrate the odd harmonics 
suppression for the designed 10:1 NTLs-WPD, 
Figure 12 shows the frequency response for the 
proposed NTLs-WPD along with those for the 
conventional UTL-WPD, in a wider frequency 
range. It is clearly seen that using the NTLs 
suppresses the first odd harmonic at 3 GHz. It is 
worth to point out here that, as shown in Fig. 

Cn
’s C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Error in 
eq. 7 

1st 
section 
l1= 50 
mm 

-0.3447 -0.2034 0.9778 0.2848 -0.3878 -0.0880 -0.1722 -0.2208 0.0562 0.0516 0.0467 1x10-6 

2nd 
section 
l2= 28 
mm 

-0.1423 -0.9494 -0.2587 0.3139 0.4395 0.2683 0.0491 -0.0320 0.0737 0.1285 0.1092 2.6x10-

7 

3rd 
section  
l3= 25 
mm 

-0.0419 -0.7070 -0.4296 0.1486 0.3324 0.3002 0.2542 -0.0035 0.0761 -0.0224 0.0928 8x10-8 
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12(a), the proposed NTLs divider operating 
bandwidth is narrower than that of the 
conventional one. Using IE3D results in Fig. 
12(a), the 10-dB return loss fractional bandwidth 
of the proposed divider is about 27.3%, whereas 
the fractional bandwidth of the conventional one 
is 97.6%. Thus, the advantages of reducing the 
overall circuitry area and suppressing the odd 
harmonics are at the expense of reducing the 
operating bandwidth. It should be also mentioned 
that the power handling capability of microstrip 
lines is restricted by heating caused by ohmic and 
dielectric losses as well as dielectric breakdown 
[18]. Step in width, bends, and other 
discontinuities cause also local concentration of 
current and thus increase the temperature and 
decrease the power handling 
capability.  Therefore, it is expected, as given in 
eq. (10) in [18], that the narrow line width reduces 
the power handling capability of the structure. On 
the other hand, the ohmic and dielectric losses 
depend also on the line length. Since the narrow 
width sections used in the proposed structure are 
of limited lengths and the overall structure is 
small in size with respect to the conventional one, 
the reduction in power handling capability may 
not be significant. Figure 13 shows the 
photograph of the fabricated 10:1 reduced size 
WPD. 
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Fig. 7. Matching parameter at port 2. 
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Fig. 8. Matching parameter at port 3. 
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    Fig. 9. Isolation parameter S23. 
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Fig. 10. Transmission parameter S21. 
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Fig. 11. Transmission parameter S31. 
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(c) 

Fig. 12. Demonstration of odd harmonics 
suppression (a) S11, (b) S21, (c) S31. 
 

 
Fig. 13. A photograph of the fabricated 10:1 
WPD. 

 
VI. CONCLUSIONS 

     Based on the theory of non-uniform 
transmission lines, a compact WPD with a 10:1 
split ratio was designed and fabricated. This WPD 
achieved a size reduction of almost 33% 
compared to the conventional UTL-WPD. 
Moreover, the designed WPD suppresses the odd 
harmonics of the design frequency by enforcing 
the ABCD parameters of the optimized NTLs to 
be equal to those of the uniform ones at the design 
frequency only. The agreement between the 
simulation and experimental results is acceptable, 
which validates the design procedure.  

 
 
 

P # 1 
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