Numerical techniques for the inversion of Eddy Current Testing data
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Abstract — In this paper, we discuss two techniques for the
reconstruction of conductivity profiles in the low frequency
limit. The first one is based on the second order approximation
of the scattered field operator. In the second procedure, the
problem is linearized at the expense of an increase in the number
of unknowns including, in this case, the current density and the
electric field. Some simple 2D examples are presented to point
out and compare the main features of the two approaches.

1. INTRODUCTION

Eddy Current Testing (ECT) is a well known method for
the electromagnetic inspection of conducting materials. From
the computational point of view, one has to deal with a direct
and an inverse problem. The direct problem consists in the
evaluation of the scattered field at the measurement probe
locations, for a given exciting field and conductivity profile.
In the inverse problem, one has to find the conductivity
profile, with the measurements and the excitations being
known quantities. The inverse problem is non-linear and ili-
posed. Usually, the model is linearized in the neighborhood
of a known conductivity background op; therefore, the
electric field inside the conducting domain is approximated
by the values obtained for 6=0p, assuming that the unknown
part of the profile Ao, often limited to a small flawed region,
introduces only a small negligible perturbation. This is the so-
called first order Born approximation that gives rise to the
class of linear methods. In this paper, we briefly discuss the
limits of this linear approximation, showing that it fails to
identify profiles varying fast spatially.

A better approximation can be obtained using a higher
order expansion of the scattered field. In particular, the
adoption of a second order approximation already allows to
substantially enlarge the class of conductivity profiles that can
be identified. A further improvement can be achieved
sometimes by noticing that the approximation error depends
upon the difference between the unknown conductivity and a
reference profile assumed as the initial point of the expansion.
Hence, the error in the expansion can be iteratively reduced
by choosing, as initial point, the solution obtained in the
previous step of the procedure.

The quadratic approach has been already used in [13-[2]. In
particular, in {1] the main aspects of the method have been
introduced with reference to a model based on the 2D integral
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equation for the electric field. In [2], the approach has been
extended to an integral 3D formulation in terms of the electric
vector potential T. In that case, the functional expansion was
in terms of the electric resistivity. Moreover, the advantage of
iterating the expansion during the optimization procedure was
demonstrated with reference to simple test cases.

Here, we compare this quadratic approach to a different
method that takes advantage of the particular structure of the
mathematical model under investigation. In particular, the
model contains the product of the conductivity and the
electric field inside the specimen. As a consequence, the
problem can be linearized at the expense of a further increase
in the number of field variables, by considering as unknowns
both the current density and the electric field. In this case,
after estimating the fields inside the specimen, the
conductivity is computed as the solution of the constitutive
equation in a proper functional space.

Some simple 2D examples will be discussed to point out
and compare the main features of these two approaches.

II. THE DIRECT PROBLEM

Consider a non magnetic conducting domain 7,
characterized by the conductivity profile o(r). Assuming a
sinusoidal excitation, the mathematical model of the problem
is described in the frequency domain by the following classic
integral formulation:

E(r)=E™(r)+(4,0E)(r), VreV, (1)
E(r,)=(4,0E)r,), Vr, €85,. @
Here E is the electric field, E™ is the applied electric field
due to a suitable system of excitation, Sy, is the discrete set of

points where the measurements are taken, 4; is the classic
integral operator giving the electric field inside ¥, associated

" to the current density J=GE flowing in ¥.. The integral

operator A,, analogously defined, gives the electric field in S,
due to the current density flowing in ¥ finally g is an

operator that, applied to E, gives oE and it is defined as:
cEcl’(V,)o oEeLll(V,). 3)

Restricting the attention, for the sake of simplicity, to the
two dimensional scalar case, the electric field is assumed to
be directed along the z axis and the integral operators assume
the following form:

4T e IV,)— —jau, [ GlHr-r])J(r)dv, vreV,
Vc
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A:Je LZ(V:) - —ja}/JOIG(k|r - rDJ(r’)dv, Vres§,

(5}
Here £ is the wave number, G is the scalar Green’s function in
the free space and we (), the set of frequencies imposed by
the system of excitation.

IiI. THE INVERSE PROBLEM AND THE QUADRATIC APPROACH

In the inverse problem, the conductivity profile is unknown
and it should be reconstructed on the basis of the knowledge
of the electric or magnetic field at a set of measurement
points for given frequencies and excitations. The inverse
problem is non-linear and ill-posed. It can be conveniently
formulated as the minimization with respect to o(r) of the
error functional:

M

W)=

k=]

2

Elf [O’] - ﬁk

(6)

where {E,,K E M} is the set of M noisy measurements of

the scattered field at the measurement points (ry, @), ..., (Fag,
wp), respectively, E'[G] is a nonlinear operator mapping the
conductivity profile into the scattered field for a given system
of excitation and E] [6] is the value of E [o] at the point

(r, @y). The operator E'[0] is defined as:
E'[o]=A,0{1- 4,0)" E™.

The solution can be obtained by expanding E’[a] in the
neighborhood of a known background conductivity ogr).
This approach was initially proposed for the phase retrieval
and the reconstruction of dielectric permittivity profiles in
{31-(5] and extended to the study of Eddy Current Testing
problems in [1]-[2]. Here, we briefly recall the basic aspects
of the method. Setting ¢ as 0=Go+A0, where Ac is a “small
perturbation”, E’[6] can be approximated as:

E[o]=El[o,]+ 4[s0]
E;Jt[a] = E; [0-0]"' Ak[AO']-i- B& [AO', AO']

Q)
(8

where Ap{Ac] is a linear operator and BifAcy, AGy] is a
bilinear operator, defined as:

A4,[ac)=4[a,(1-4,0,)" 4 +1]ac B, ©)

B,[Ac, A0, ]=4, [go(l— 4,0,)" 4, +1]Ac, -
(10)
'(1_44;20)_l 4,40, £,
with E4 being the electric field associated to the background
conductivity Gp:

(1n

Notice that the linear approximation is consistent with the
zero order approximation of the electric field in S.. Instead,

Ey= (I_Aigo)-l E™
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the quadratic expansion requires the first order term in the
approximated expression of the electric field in S, This
allows to take into account the reaction field inside S.
associated to the variations AG of the unknown conductivity
profile. This contribution is relevant when the skin depth is of
the same order of the characteristic dimensions of the domain
and it allows to enlarge the interval of frequencies where the
approximation hoids. Thus, an increased number of
independent equations are available with respect to the linear
case at the expense of a slight increase of the complexity of
the system that becomes nonlinear. Notice also that the fast
space varying components of the profile are filtered out by
the integral operators in the linear case, whereas their effect is
detectable in the higher order approximations.

A discrete approximation of these operators can be
obtained by assuming AGe Z=span {f1, ..., fis} where fi, ... fy
is a set of linearly independent base functions for AG such as:

Ao(r)=X¢, £, (r) (12)
Then
Ej o, +17c]=E[o,]+[4]e+e"{B e (13)

where {4, ], = 4,[/.]. {B},, = B,‘[f,.,j;], ¢ =[c,.K .y}
and I =[£.K.f].
IV. THE QUASI-LINEAR APPROACH
The bilinear form of the mathematical model can be further

exploited. To this purpose we rewrite the system in the
following form:

AJ=E° (14)
E=E™ + 40E (15)
J=0oF (16)

where E° is the scattered field. Then, we discretize egs (14)-

(15)-(16), by choosing suitable weighting and shape
functions, thus obtaining
{4.11=[£*] a7
(E]=[£™ |+{4 }{/] (18)
[V]={c}{£]. (19)

{Ae}, {Ai} and {G} are the matrices representing the integral
operators A,,, A; and the operator g, respectively, while [J]
and [E] are the vectors made of the components of J and E
associated to the chosen shape functions. To simplify the
notation, a single excitation is considered in the following,
since the extension to multiple excitations 1s straightforward.
The first two equations form an ill-conditioned linear
system in [J ] and [E] In fact, only a number of components

of [J], related to the pattern of singular vatues of {4.}, can
be reconstructed in a reliable way. The solution of (19)



provides the unknown conductivity profile. This model has
been studied in [6]-[7] for the reconstruction of permittivity
profiles. There, the knowledge associated to the background
is not taken into account and all the equations are discretized
using pulse shape functions and a point matching approach.
In [7], a solution of (17) is first obtained by means of the
pseudo-inversion of the operator 4. Then, (18) gives an

estimate of [£] and finally ¢ is obtained solving (19) by a
point matching approach. Here we analyze this method

showing how it can be conveniently improved. To this
purpose, the system (17)-(19) is rewritten as

{A,}(I—{a Ha Y [7]=1aeT 3[E]-[&] (20)
(B (o (-4 Y ) (4 1] an
[]- {Aa}[E] [0] (22)

where [E,]

1= (- G (e and (5], HeJE)
Note that to compute [AE] the pseudo-inversion of the
matrix {4, }(I —{o, {4 })-l is required which has a slightly
better conditioning than the matrix {4, }.

To solve (22), once [J] and [E] are estimated by means

of (20) and (21), respectively, we expand Ac as in (12), so
that {Ac} =Y e {f}
de

The key point is to project the constitutive equation on a
suitable basis. In fact, the reconstructed field variables show
strong fluctuations due to the difficulty of reconstructing the
fast space varying components. The information related to
these components is meaningless and should be filtered out. A
natural basts is associated to the singular value decomposition

[UAV} of the {aY1-le Hal)
{41 -{e.Ha)) ={UHalr}

By projecting (22) on the right singular vectors and using (20)
we have

[w][aE* }-X AV} {/i {Ek, =0.Vi=LK N,

with N, being the number of singular values above a suitable
threshold. The linear system (23) is over-determined since
N,-N, /2>N and is solved by means of a pseudo

inversion.

With this approach we have obtained a significant
improvement of the quality of reconstruction in comparison to
the previous one as it will be shown in the numerical
experiment presented in the next section.

matrix l.e.

(23)

V. THE MODEL PROBLEM

We refer to a indefinite hollow cylinder, whose cross
section is a thin circular crown, excited by a system of
currents directed along its axis. The eigenvalues of the
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operators 4, and 4; can be computed analytically [8]. Their
expressions are:

il
a, = R 11 , Vnz0
2 |d\R,
. T J
= —j2wu R al ——InlkR ) —=
J Iuﬂ 14 ( 2 ( m) 4)
4= L vuzo
2 |

. 7 J
JQ&J;LORJ( > In{kR,) 4]

Notice that the eigenvalues of 4, go to zero as n goes 10
infinity so that the scattered field, in presence of noise, can be
described with a finite number of parameters. Assuming that
the available set of excitations is finite, the information to
reconstruct the profile is limited to a finite number of
equations. Hence only a finite number of unknown
coefficients can be reconstructed in a reliable way.

We assume for I the space spanned by the first N, Fourier
harmonics. In this case, it is very useful to expand also the
fields in terms of sinusoidal shape functions, the
eigenfunctions of the operators 4, and A4,. It follows that the
system of equations can be rewritten in the following form:
of the background Gy, since its euclideian norm [|Ac}| is much
smaller than [|Gg||. The discretized model is made of 21x7x2
real equations obtained with N, =7 excitations at the frequency
/=10kHz and N,=21 complex field measurements. The profile
is approximated by the first N;=10 Fourier harmonics (21 real
unknowns).

a,), =E,

E,=Er+d Y 0, E,

&

J, = Zan—kEk »
P

VI. NUMERICAL RESULTS

The main parameters of the numerical experiment are
defined in Fig. 1 and their numerical values are reported in
Table I In particular, the incident field is produced by two
filamentary conductors, carrying equal and opposite
sinusoidal currents and located at R=R,, 6=0xA8,2; the
couple of source currents is sequentially placed around the
cylinder axis, taking N, series of measurements
(8,=(i-1)27/N,, i=I, .., N.). The field measurements are
taken at R; =R,,, 9=(i-1)2/N,, i=1, ..., Na. A typical profile
is described by a rectangular pulse of width A® and amplitude
AG; on a constant background oy as shown in Fig. 2.

The first example aims to show the improvement on the
Born approximation given by the quadratic term. In Fig. 3, we
show the results of the reconstruction using a linear and a
quadratic approach, respectively. The profile has a width
AB8=30°, an amplitude Acy~1 MS/m, on a background
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Fig. 1. Geometry of the model problem.
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Fig. 2. The reference conductivity profile.

Go=1MS/m. Notice that Ac is a relatively small perturbation
of the background Gy, since its euclideian norm jJAc}| is much
smaller than ||og||l. The discretized model is made of 21x7x2
real equations obtained with N,=7 excitations at the frequency
J=10kHz and N,,=21 complex field measurements. The profile
is approximated by the first N =10 Fourier harmonics (21 real
unknowns). The physical constraint ¢ 20 has not been taken
into account in order to take advantage of the simple
mathematical structure of the error functional. In Fig. 4, the
results obtained for the same reference case but solved with
the “quasi-linear” approach are shown. In this case the
unknown current density and electric field are discretized
using 101 Fourier harmonics.

In Fig. 5, we show the current density and the electric field
as reconstructed by solving egs. (20)-(21) and compared with
the true (numerically computed) values.

In Fig. 6, the conductivity profile provided by eq. (23) and
by a point matching solution of eq. (16) using a single
excitation are reported. The anomalous spike in Fig. 6b is due
to the errors in the estimation of the current density in
correspondence of the electric field zero crossing.

To understand the different features of the two approaches,
we remark that, in case of the functional expansion, the series

Table I
MAIN PARAMETERS OF MGDEL PROBLEM
Parameter  Value Parameter Value
R 0.025m RJRcx 1.02
Rin 0.024m Np 21
A8, 60° Ne 7
RevRex 1.02 f 10kHz
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is convergent if the Euclidean norm of the matrix

[s}=(1-{4 Xa.}) {4 HAc} is less than unity. In the
“quasi-linear” method, the conditioning of the matrix
{Aq,}:{AL_ }(] —{go }{A, })_l is responsible for the quality
of the reconstruction. In both cases, the high frequency
components of the profiles are the most difficult to be
identified because of the spatial filtering introduced by the

integral operators. To support these theoretical considerations
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Fig. 3. The conductivity Ac (dashed line) obtained using the linear (a) and
the quadratic (b} approach, compared with the unknown profile (solid line).
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Fig. 4. The conductivity AG (dashed line) obtained using the “quasi-linear”
approach, compared with the unknown profile (solid line).
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Fig. 5. The real part (solid line) of the electric field (a) and the current

density J (), respectively, and their reconstruction obtained using the
“quasi-linear” approach (dashed line).

0 100

we performed several numerical experiments varying once at
the time three parameters, the frequency f affecting the
conditioning of {4}, and A8 and Ac), influencing the norm
of the matrix {S}. In Fig. 7, we show the profiles as
identified by means of the “quasi-linear” procedure, assuming
a frequency of f=100Hz, lower than in the reconstruction
shown in Figs 3-4, Because the conditioning of {4y}
improves with f, better resuits are obtained with the “quasi-
linear” method at higher frequencies. To further clarify this
point, in Fig. 8, we show the normalized singular values of
{A.} and {4y} for the two frequencies. It can be seen that, at
#=100Hz, the two patterns are practically coincident whereas
at f/=10kHz {4y} has a better conditioning than {4.}. The
quadratic approach has a dual behavior, since the error
increases with the frequency as a result of the increasing of
the norm of {S}. In Figs. 9 and 10, we show the results
obtained for Ac)=10MS/m and A6=60°, respectively. The
reconstruction via the quadratic approach becomes more
difficuit since the norm of {5} increases with A6 and Ac),.

VII. CONCLUSIONS

The objective of this paper was to discuss the main
characteristics of two different approaches for the
reconstruction of conductivity profiles. The first one is based
on the second order approximation of the scattered field
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operator. In the second procedure, the problem is linearized at
the expense of an increase in the number of unknowns,
including, in this case, the current density and the electric
field.

It has been shown that the introduction of the quadratic
term in the expansion of the scattered field improves the
quality of the reconstruction especially in case of fast
spatially varying profiles. The main limitation of the method
is related to the convergence of the expansion and hence to
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Fig. 6. The conductivity AG (dashed line) obtained using the “quasi-linear™
approach with a single excitation, compared with the unknown profile (solid
line). a) Singular functions projection. b) Point matching.
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Fig. 7. The conductivity AG (dashed line) obtained using the “quasi-linear”
approach with f=100Hz, compared with the unknown profile (solid line).
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Fig. ¢ The conductivity Ac (dashed line) obtained using the “quasi-linear™
(a) and the guadratic (b) approach with AG=10MS/m, compared with the
unknown profile (solid line).

the norm of the matrix {S}. Larger norms introduce higher
errors in the approximation of the field. Another critical issue
is related to the presence of local minima. The particular
structure of the second order operator can be conveniently
used to avoid (at least in principle) their presence [3]-[5].

The “quasi-linear” approach, on the other hand is limited
by the conditioning of the matrix {4y}, affecting any
reconstruction procedure. It has been shown that the
conditioning can be conveniently improved by introducing
the knowledge of the conductivity background.

Although further investigations are required for testing the
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Fig. 10. The conductivity AG (dashed line) obtained using the “quasi-linear”
(a) and the quadratic {b) approach with AB=60°, compared with the
unknown profile (solid line).

procedures in more realistic and complex three-dimensional
geometries, the knowledge gained by this theoretical analysis
and a number of 2D tests allows us 1o conclude that both
techniques can be efficiently used for the reconstruction of
conductivity profiles.
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