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ABSTRACT. The capacitances of three phases cable
and the characteristic impedance of coaxal transmi-
ssion line with complicated shape of the cross
sections are evaluated by using boundary element
method. The ecalculated results obtained by the
proposed method are coincident well with the
results given by the literatures [2-9].

1 INTRODUCTION

In engineering practice, the capacitances of multi-
phases cable are calculated approximately by using
curves and tables such as given in reference [3].
The numerical methods are rarely used to calculate
the characteristic impedance of the coaxal trans-
mission lines due to the accurate result of the
flux density is not easy to obtain amd the corner
effect can not be dealt with well. Hence many au-
thors intended to find a simple snd accurate method
to obtain the spproximste snalytical formulae for
calenlating characteristic impedance of coaxal
transmission lines with complicated cross section.

By comparison with finite differsnce and finite
element methods, the boundary element method is
eagy to obtain the distribution of the normal
derivatives of potential along the boundary of the
field region directly. It is profitable to
caleulate the totsl flux along the conductor
surface. Hence, the parsmeters of the capacitance
of multi conductors with any shapse of the cross
section can be obtalned in a easy way with
sufficient sccuracy. The capacitances of multi-
phases cable and the characteristic impedence of
transmission lines with complicated shape of the
cross section for TEM mode wave are calculated by
the boundary element method in following sections.

2 BRIEF IRTRODUCTION GF BOUNDARY ELEMENT METHOD

Based on the weighted residual principle, the
boundary integral equation of Laplace’s equation
is:
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where u is the function of Laplace’s operator, F is

the fundamental solution of Laplace’s equation, u

is the function wvalue at any point 1 of the
boundary of the field region, ' is the boundary of
problem region, n represents the normsl direction
of the boundary. For smooth boundary, Ci=1/2 [1].

After using the discretization teclnique, Eg.(1) is
spproximated by
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where N iz the total number of elements along the
boundary which is disoretized, l",. iz the boundary

of each element.
Suppose the unlmown function u is approximated by
u= }"_, LAY (3)
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where Ni is the shape funetion. Let
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then Eq.(2) is expressed by a matrix form
HU=GQ M

Where H,G are coefficient matrices of order HxN,
U,Q are column matrices of order ¥ of potentisls
and itz normal derivativema along the boundary.
Solve Eg.(5), the normal derivatives of the
potential are obtained - with the s=sams degree of
accuracy ax the potential itmelf.

In Eg.(3) the shape function [N] is depending on
the type of discretization element. The fundamental
golu~ tion of Laplacian is
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where I,.r; are positions of field point and source
point,’ respectively.

3 CAPACTTANCES OF CABLES WITH ANY SHAPE OF
CROSS-SECTION

3.1 Validation of the Method

Two examples are used to examine the acouracy of
the method.

Example 1: A coaxial csble with radins of R‘=1cn.
Rz=2cm is showm in Fig.1l(a).

The inner and outer circles are subdivided into 18
and 24 linear elements. Suppose the imposed voltage
is 1V. By using the boundary element method, the
field strength at the inner and the outer

conductors are 0.144535x10*(V/m) and  0.72288x10*
(V/m), and the relative are +0.18% and 0.29%,



respectively. The capacitance per unit length of
the coaxal is 80.37065pf and the relative errar of
the capacitance is:

__80.37065-80. 2607
e " B50.2607 =0.1%

The accuracy is gquite good.

(a)

R =1.0cm

Fig.1(a) Coaxal cvlinder
(b) A pair of parallel eylinder

Example 2: Each contour of the cross section of =&
pair of parallel line as shown in Fig.1(b) is
divided by 12 linear elements. By using the
boundary element, methed, ths capacitance per unit
length of this system is 20.85376pf. The relative
error is 1.2%.

3.2 Applieation:

The partial capacitances of milti-phases cables
with different shape of the cross sections are
usually caleulated by means of figures and tables
as introduced in reference[3). The cross section of
a symmetric three-phase cable is shown in Fig.Z.

Fig.2 The cross mection of a three phases cable
(R=1‘.Ucm Rz=4.Ucm d=2.0cm)

Bazed on the definition of the inductive coeffi-
cients between multi conductors and the partial ca-
pacitance defined as Eq.(8), the paramsters of Cm,

C‘k can be calculated by the above method directly.

8,=C, U, +C

10 1

12U13+' " ‘+C1kU1k+' ‘+CanU1n

+.o.4C U

olkot - 4G, U

k2 k2 knkn (8

kackluki-'-c v

Q=C U +C U .,

nond nmL nz nz

AC LU+ U

In Eq.(8), Uk::Uko_U

zo’

By using the above melhod. the partial capacitances
of the three phase cable shown in Fig.2 are Cm=’3zo

:Caozls' 3007pf and C;z=cza:C31:9'977897pf'
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Compare the sapproximate solution obtained from
reference [3], the error of Cm is:

F =_13.3007-13.528
- 13.528

A =1.88%
10

If the shape of the inner econductor is irregular,
for example the sector gpproximte to elliptic, the
partial capacitance can be calculste by the same
way.

4 CHARACTRRISTIC THPEDANCE OF TRANSHISSION LINRS

The characteristic impedsnce of coaxal transmission
lines with different shape of cross sectiong both
of the inner and the outer conductors ars denlt
with by many asthors by mesns of analytieal and
semi-analytical formulations such ss those given in
references[2,4-9]. In this paper, the boundary
element method is succeesfully used to calculate
the characteristic impsdance of the coaxal trans-
misgion lines constructed by =sn inner conductor
with circular cross mection surrounded by an outer
conductor with a polyganal cross section and vice
versa. For TEM mode transmimsion line=, the field
distribution between econductors satisfies the
Laplacian equation. The method introduced in former
section iz used. The characteristic impedances of
the transmission lines with polygonal and circular
conductors as shown in Fig.3(a),(b) and Fig.4 are
caleulated. The compariszon of the numerical results
calculated by BEM with those obtained from di-
fferent 1literatures of thesge configuration is
listed in Tsble 1 and 2. For Fig.3(a) and (b), the
outer and the inner conductors are divided by 38
and 20 linear elements, respectively. For Fig.4,
the circle ig divided into 20 linear olements and
the square is divided into 38 linear elements.

|
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(a) N=4

B—
(b) H=6

Fig.3 Polygonal trsnsmission line with
circular inner conductor

Fig.4 Circular transmission line with
square inner conductor



Table 1 Characteristic impedance zom) of the polygonsal
transmission line with Circular inner conductor

(a) R=4

(b) N=B

A/B present work Estevez[2] Lin[3] Pan[4] Riblet[9] present work Estsvez[2] Lin[4] Ma[B] Fan[8&]

.05 183.72 185.21

183.77 184.14 181.44 182.10 182.38 162.79 181.82
.10 142 32 143.186 142.21 142.59 140.04 140.36  140_82 141.20 140.28
.20 100.92 101.02 100.86 101.02 96.684 98.80 99.27 935.81 98.71
.30 78.70 76.41 76.35 78.689 74.43 74.19 74.98 75.28 74.38
.40 59.52 59.02 93,10 59.42 57.24 56.80 57.71 58.02- 57.14
.90 46.19 45.81 45.73 48.00 46.09 43.92 43.53 44.34 44.63 43.75
.60 35.29 34.71 34.80 35.00 35.15 32.03 32.84 33.41 33.69 32.80
.70 26.03 25.49 25.55 25.86 25.B5 23.81 23.44 24.18 24.44 23.53
.80 17.90 17 44 17.55 17.48 17.88 15.60 15.48 16.18 1B.43 15.47
.90 10.37 10.01 10.48 9.87 10.13 8.85 8.31 9.10 9.38 8.27
.94 7.28 6.99 5.93 9.55 6.49 B.75 5.53
.95 6.42 8.13 7.25 8.20 6.25 5.25 4.84 6.12
.99 2.17 2.38 2.41 1.689 3.39 3.85 1.78
.998 2.49 0.99 4.29 1.07 1.00 1.54 0.68 3.18

Table 2 Characteristic impedence ZO(Q) of the cir-

cular line with sguare inner conductor

B/A present work Lin[5] Ha{B] Pan{8]

.05 168.44 169.87 162.72 169.86
.10 127.05 126.11 128.13 128.12
J20 85.86 B58.55 ©B6.54 88.58
.30 61.45 62.24 82,21 862,23
.40 44 .26 44 .97 44.95 44,92
.50 30.87 31.51 31.56 31.38
.60 19.66 20.20 20.62 19.9%
.70 9.25 8.85 11.37 7.32
Table 3

A/B 0.05 0.10

The convergence of the method is proved by using
the construction of the transmiszion line showm in
Fig.3(b). The outer and the inner c¢onductors are
subdivided by (38+20) and (30432) linear elements,
respectively, the characteristic impedances{fl) are
listed in Table 3. The results show that the wvalue
of the calculated characteristic impedance. is di-
fferent if the number of the discretization ele-
ments are different but the difference is very

small. It shows that the numerical results are
reliable.

5 CONCLUSIONS

1. The BEM can obtain more accurate results for the
potential derivative along the conductor surface
than the finite difference and finite element
me thods. Hence it can be used to calculste the
capacitance and charscteristic impedance of
transmission lines with different shape of crose
sections.

2. For the polygonal transmission line with cir-
cular inner conductor., the numerical results are
coincident very well with the analytical re-
gilts given by different approximste methods of
different authors. In this case, the effect of
the inner corner of the outer polygonal has no
siginificant influence the field distribution.
Hence, the corner effect in the numericml method
has not present as a problem.

3. Table 2 shows that the sccuracy of the charat-
teristic impedance for the circular transmission
line with square inner conductor is a little bit
lower only if the inner conductor is larger.

4. Table 3 shows that the stablity of the numerical
results are good.
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0.20 0.30 0.40 0.50 0.80 0.70
Element No.(36+20) 181.44 140.04 98.64 74.43 57.24 43.92 33.03 23.81
Element No.(30+32) 181.73 140.23 98.73 74.45 57.22 43.86 32.94 23.71

Table 2 showz that if the inner econductor ia
square, the differsnce of the impedence between the
numerical results and the analytical results look=
cbvious. However, for B/A=0.05—0.6, the
differences are 0.73% — 2.6%. This influence is
due to the corner effect of the inner conductor. If
the inner conductor is larger then the influence is
bigger. But for large ratio of B/A, the coincidence
of the result loocks well than the result obtainsd
by different analytical methods.

The convergence of the methad

]

EMGD
wmen
P NO

b o
2E8
Y-
tn o3

[red
a2

g0
81
B8

oo
288
oo
38k
poo

15.81 8.
15.68 8.
5  REFRRENCES:

{1] C.A.Brebbia, 'Boundary Element Methed’, Fentech
Press, 1878
[2] H.Eatevez, etal, ‘A Hethod for Approximating
The Characterimtic Impedence of Cosxal Lines in
Which The lnner Conductor Is Circular and The
QOuter Polygonal®, IEEE Trana., Vol. MIT-37,
pp.634-637, 1989
{8] Lis Ziyu, ‘Design Principle of Electrical Iso-
lation Construction’, Posser Cable Machnical
e Cosxal Line With Round
¥.G.Lin, ‘Polygonal Coaxa ine
(4] Center Conductgg ", IEKE Trans. Vol.MIT-33, pp,
545-550, 1985
[5] W.G.Lin, ‘A Critical Study of The Coaxal
Transmission Line Utilizing Conductors of Both
Circular And Square Cross Section”, IEEE Trans.
Vol. MTT-30, pp.1981-1988, 1882
[6] X.K.Ma, ‘Characteristic Impedence of Coaxal
Cylinder sand Polygonal Transmission Lines
Calculated by Elementary Function’ (in
Chinese), Optical Fibre and Csble, Vol.3,
pp.5-7, 1991
{7} S.G.Pan, ‘A New Method for Caleulating The Cha-
racteristic Impedence ¥ith Complex Croes
- Sections of The Transmission Lines”, Science in
China(Serie A) ,Vol.9, pp.999-1008, 1988
[8] S.G.Pan, "Approximate Determination of The Cha-
racteristic Impedence of The, Coaxal System
Consisting of An Irregulsr Outer Conductor And
A Circular Inner Conductor’, IEEE Trens_,
Vol MIT-35, pp 61-63, 1987
[9] H.J.Riblet, ‘An Accurate Approximastion of The
Impedence of A Circular Cylinder Concentric
with An External square Tuhe’, IEEK Trans.,
Vol. MTT-31, pp.B541-844, 1983




