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1 Abstract

A hybrid technique is developed, using the integral
equation/moment method solution approach with
non-free space Green’s functions, for a class of scat-
tering problems involving nearly-circular 2-D dielec-
tric cylinders under TM, illumination. The tech-
nigue is applicable to other nearly-canonical 2-D
penetrable scatterers, and may be extended to cer-
tain 3-D geometries. Applications to several 2-D
geometries are demonstrated, with scattering pre-
dictions compared to those from a standard moment
method code.

2 Introduction

The method of moments (MM) is one of the most
powerful techniques for solving electromagnetic ra-
diation and scattering problems in the frequency
domain. Most implementations of the MM begin
with invoking the surface or volume equivalence the-
orems, in which all material in the problem is re-
placed with free-space along with equivalent scatter-
ing currents. This results in an integral equation in
which the unknown currents are integrated against
the free-space Green’s function.

The power of such a formulation lies in it’s gen-
erality; the same free-space Green’s function can be
used for any geometry. However, in some cases, this
generality comes at the expense of computational ef-
ficiency, since the unknown currents must span the
volume or boundary of the scatterer. On the other
hand, if the geometry under consideration is “close”
to a canonical geometry for which the Green'’s func-
tion is known, then computational savings can be
reaped if the integral equation is set up to exploit
the Green’s function. (For an excellent overview of
this hybrid technique, see Newman {4].} An exam-
ple of such a gecmetry is a nearly-circular, nearly-
homogeneous (“perturbed”) two-dimensional (2-D)

47

dielectric cylinder.

In this paper, a hybrid Green’s function/method
of moments (GF/MM) solution will be presented for
the plane-wave scattering from a perturbed dielec-
tric cylinder in the TM, polarization. First, the
geometry of the perturbed dielectric circular cylin-
der will be defined. Second, the Green’s function
for the circular, homogeneous 2-D dielectric cylinder
will be developed. Third, the integral equation for
the scattering from the perturbed dielectric cylinder
will be developed. Fourth, a volumetric pulse/point-
matching MM solution will be presented. Fifth, nu-
merical results will be presented for several repre-
sentative perturbation geometries.

3 Geometry

Consider a dielectric circular cylinder with radius
o and constant dielectric constant £, that is per-
turbed by an arbitrary protrusion and/or inclusion,
as shown in Figure 1. We will denote the cross-
section of the protrusion as 2,, and the cross-section
of the inclusion as €2;. The protrusion material has
relative permittivity &,, while the inclusion material
has relative permittivity e;.

In the most general case, {1, represents any region
outside the original circular cylinder, and §; repre-
sents any region inside it. These perturbed regions
can even be inhomogeneous (that is, ¢, and ¢; can
vary within £2, and ;, respectively), although e,
must be a constant.

4 Green’s Function

The Green’s function for a circular, homogeneous
dielectric cylinder is well known [7]. Ruck [6] uses it
to give a formula, in terms of an infinite series, for
the scattering width of a dielectric cylinder.



Protrusion: =€,
Inclusion: e=g¢,

Cylinder: ex¢ g,

Figure 1: Perturbed Circular Cylinder Geometry

In general, for the TM, polarization, the 2-D
Green’s function G(5, ') is proportional to the 2-
directed electric field at observation point g due to
a 2-directed monochromatic electric line source of
unit strength at source point g’. It obeys the inho-
mogeneous Helmholtz equation

(Vi+E)G(p,p") = —8(5 - (1)
where V? = 8%/8z% + 8°/8y? and k is the prop-
agation constant of the medium containing the ob-
servation point. The propagation constant outside
the cylinder is ky = ,/€opo, while the propagation
constant inside the cylinder is &y = /gcko, where g
and gg are the permittivity and permeability of free
space, respectively. The time convention /7 is as-
sumed and suppressed. Finding the Green’s function
for an arbitrary geometry is generally non-trivial.
However, if the geometry consists of 2 homogeneous,
linear, isotropic dielectric circular cylinder centered
at the origin and having radius ¢ and relative dielec-
tric constant e., then the Green’s function is reason-
ably straightforward to find by choosing it to obey
the same boundary conditions as the electric field.
Specifically, we choose G(p,7’) to satisfy periodic
boundary conditions in ¢ and continuity boundary
conditions at p = a:

P')

G20 My=o = G(5:P")ym2s (2)
G(p, p') 9G(p,p’) @)
6¢’ ¢=0 a¢ $=27

}1_1’% G(ﬁy ﬁ’)lp:a—é }Lné G(ﬁlﬁ’)lp:a-ﬂf (4)
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oG(p,p')
dp

8G(p, p')
dp

lim
§—0

lim
5—0

(5)

p=a—3§ p=a+d

In addition, we expect the Green’s function to obey
the radiation condition as p — o0, and to remain
bounded as p — 0. The structure of the Green’s
function G(5,7') allows us to identify two compo-
nents such that

G(p,7') = Go(p,P') + G (B, B") (6)

The first component, Gy(5, #"), has the same form as
the 2-D free-space Green’s function and the second
component, G,(p,§'), is an infinite series of eigen-
functions. The expression for G{7, 5’) takes on dif-
ferent forms depending on whether the source and
observation points lie inside or outside the cylinder.

4.1 Casel: p,p'<a

When both the source and observation points lie in-
side the dielectric circular cylinder (ie., p,p’ < a),
the components of the Green’s function are given by

Golp.p") = —H k15— 7) (7)
Gu(p,5") = DStV p)cosll(6 - 6] (8)
=0
where
T
50,0y = L2 Rkip) krp")  (9)
{
A = Ji(kia)H ) (koa) —
— (k1 /ko)Trg1 (ko) H X koa)  (10)
_ gz ()
B = H )(kla)HrH(koﬂ)—
— (k1 /ko) B (k1a)H Xkoa)  (11)

J1(z) is the Bessel function of the first kind of order

land H ,(2)(.2) is the Hankel function of the second
kind of order {. The neumann number ¢ is defined
as one when [ = 0 and zero when [ # 0.

4.2 Case 2: p,p' > a

When both the source and observation points lie out-
side the dielectric circular cylinder (i.e., g, 0" > a),
the components of the Green’s function are given by

Golp. ) = ~2HPkol5- 5D (12)
G:(p.5) = > 8p,p")cos[ld — ¢")](13)
=0



where

aC
i = kop) H{kop") (14)

Jf(kla)j;+1(kga) bl
- (kl/ko)Jr+1(k1a)J1(koa)(l5)

S5(p, ")
C

and the other quantities are as previously defined.

4.3 Case 3: p<a<p'orp’'<a<p

When the source and observation points lie in differ-
ent regions (i.e., one inside and the other outside the
dielectric cylinder), the components of the Green’s
function are given by

Go(g,8') = 0 (16)
Gelp,5") = 3.5(p,p")cos (¢ — "](17)
=0
where
5 (p,p") = ZLA—JI(M)H}”(%;:,) (18)
pc = min(p,p’) (19)
P> = max(p,p’) (20)

and the other quantities are as previously defined.
Equations 6, 7, 8, 12, 13, 16, and 17 specify the
Green’s function for an arbitrary pair of source and
observation point locations in the presence of a ho-
mogeneous dielectric circular cylinder. The Green’s
function can now be used to formulate an integral
equation for the case of the perturbed cylinder.

5 Integral Equation

Let us dencte the total 2-directed electric field as the
sum of generalized incident field EY* and scattered
field F! components,

E.(P)

where the generalized incident field is that field
which would exist in the presence of the unperturbed
cylinder. Invoking the volume equivalence princi-
ple [1], we may replace the perturbed geometry with
the unperturbed cylinder along with an equivalent

= E(p) + E3(D) (21)

Z-directed electric current demsity J.(p). J.(p) is
related to the total electric field by
J:(p) = jweo [¢(P) — E(P)] £.(D) (22)
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where £(5) is the relative permittivity of the per-
turbed geometry and &(p) is the relative permittiv-
ity of the unperturbed geometry. Note that J, is
nonzero only within the region Q, U ;. The equiv-
alent currents radiate the scattered field via the ra-
diation integral

EZ(p) L(J,)

—jwitp /

where G(5,p’) is the Green’s function of Equation
(6)-

Combining Equations {21), (22), and (23), we may
write the integral equation

AG)

jweo {e(p) — E(5)]

7.(5")G(5, 5")dp" (23)

U8,

EF(p) = - L{J;) (24)

6 Moment Method Solution

Let us approximate the unknown current density
J.(p) using a pulse basis expansion,

N
J:P) = Y enPulp) (25)
where )
ro={ g oo (29

and the non-overlapping set {Q,}3_; spans Q, US;.
We will further assume that =(7) is constant over
each . Since J,(7) is assumed constant over each
(1,,, these regions should be chosen to be reasonably
small and squarish [5]. A good rule of thumb is that
no linear dimension of €2, should exceed A/15.

If we plug our expansion for J,(7) into the inte-
gral equation (24) and enforce it at the center of
each pulse, we generate an N-by-N linear system of
equations,

N .
ES ()~ S cn L‘i :[()st) Lm(pn)] (27)
valldfor m=1... N where
Aep, €(Pm) ~ E(Fm) (28)
Ln(P,) = L(Pn)lﬁzﬁm (29)

Due to the sifting property of the pulse bases, the
first term in brackets of Equation (27) is only active
when m = n; that is, Pr(5,,) = bmn where by is



the Kronecker delta. Equation (27) can be expressed
in matrix form as

EZ(p) Zir 0 v ¢1
: ~ D : : (30)
Ef (by) Zn ZNN CN
where 5
Zmn = e = L (Py) (31)

7T jwegAem,
form,n=1...N.

6.1 The Generalized Incident Field

Let the generalized incident field E§*(5) be caused by
an electric line source of unit strength at *. Thus,

EF(p) = —jkomoG(p, ') (32)

where 19 = \/po/=o is the impedance of free space.
As p* — oo, E4*(f) becomes indistinguishable from
the excitation of a uniform plane-wave incident from
the ¢* direction. Using the the large-argument
asymptotic form of the Hankel function [3] in the
Green’s functions of sections 4.2 and 4.3, we find,
for p < a,

0 2ky . i
o ekl B L1 T

EZ(5) or | Fapt

Z %jrjz(klp) cos {{{¢ = 6%)] (33)

=0

and for p > a,

=30 [ 2ko _jkopt ) ikepcos(p-at) _
4 Yump

-3 ﬂfr_zj‘Hf(z)(koP) cos [I(¢ — ¢')] } (34)
I=0

EZ(p)

6.2 The Scattered Field

Once the generalized incident field at the match
points have been calculated and the elements of the
[Z] matrix have been found, then Equation (30) can
be solved for the coefficients ¢,,. The scattered field
at observation point 7° is then the sum of the fields
radiated by the currents J, and the field scattered by
the unperturbed dielectric circular cylinder. Letting
p° — oo, we find

Ei(p°) = —jkono{Gs(ﬁ",ﬁ*H

Notice that we have purposely omitted the direct
radiation from the source to the observation point. If
we further assume that the far-field radiation of the
scattering currents can be approximated by the far-
field radiation of appropriately weighted line sources
located at the match points, then we can write

EXf°) = —jkomo {Gs(ﬁo,ﬁi)*‘

N
+ Z en{Arean )G(5°, 5,,)} {(36)

n=1

where (Area,) is the area of the n-th pulse basis
function. The echo width of the perturbed cylinder
is defined to be [2]

Ep)|?
Ei(D)

L. = lim 2#p (37)

F—00

where E%(0) is the incident field at the origin pro-
duced by the line source at g radiating in free space.
If we let the source and observer recede to infinity
at the same rate (p° = p° = p — o), then we can
combine Equations (36) and (37) to write

G,(p, P)

Le(¢',¢°) = F@—)"ﬁ-

lim 27p
P=+00O
2

Ef:l cﬂ(Area’ﬂ)G(ﬁﬂ ﬁn) (38)

£;(0)

-+

Equation (38) represents the bistatic echo width of
a perturbed dielectric circular cylinder. If ¢ = ¢°,
then Equation (38} gives the monostatic echo width.

7 Results

The hybrid GF/MM technique was tested against a
standard surface integral equation MM (SIE MM)
program for bistatic echo width predictions. The
SIE MM program expands electric and magnetic
surface currents along the perimeter of the homoge-
neous dielectric scatterer, using pulse basis functions
and Galerkin testing. FEach program was written
in FORTRAN and executed on a Sun SPARCSta-
tion 2. Three perturbation geometries were chosen,
each based on a dielectric circular cylinder having ra-
dius a/Ag = 0.5 and relative permittivity £, = 2.0.
The bistatic echo width for the unperturbed geom-
etry is shown in Figure 2, in units of dB relative to
one free-space wavelength.
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Echo Width vs Bistatic Angle
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Figure 2: Bistatic Echo Width for Unperturbed Ge-
ometry: afA = 0.5, e, =2.0
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Figure 3: Bistatic Echo Width for Geometry #1:
afdo =05, 8. =20,Q, = {5:05 < p/rp < 0.8,
-5% < ¢ < 5°}.

The first perturbed geometry consists of a single
profrusion on the right side of the dielectric circu-
lar cylinder, as shown in the inset of Figure 3. The
protrusion extends from p/A¢ = 0.5 to 0.6 , and
from ¢ = —5% to 5° . The protrusion material
has relative permittivity e, = 2.0, so that the per-
turbed dielectric cylinder is homogeneous. Figure 3
shows the bistatic echo width for ¢ = 0° and ¢°
from 0° to 180°. The bistatic echo width is plot-
ted in units of dB relative to the bistatic echo width
of the corresponding unperturbed dielectric circular
cylinder (Figure 2). The results show that the SIE
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Table 1: Computer Usage Summary

Hybrid

GF/MM SIE MM
Time | Pulses Time
Geometry | N (sec) ! per Ag N  (sec)
1 4 0.6 20 138 4.8
50 340 479
2 8 1.9 20 148 5.5
50 364 581
3 3 0.4 20 154 6.3
50 376 63.7

Echo Width vs Bistatic Angle
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Figure 4: Bistatic Echo Width for Geometry #2:
alp = 05,e. =20, 9, = {p:05 < pfr <08,
-5° < ¢ < 5°, 175° < ¢ < 185°}.

MM formulation requires 50 pulses per wavelength
to achieve the accuracy of the hybrid GF/MM for-
mulation with only 4 total unknowns. Table 1 shows
that the hybrid GF /MM program executes nearly 80
times faster than the SIE MM program for this ge-
ometry.

The second perturbed geometry is similar to the
first geometry, except that a second, identically-
shaped protrusion is added to the left side of the
circular cylinder. Figure 4 shows excellent agree-
ment between the hybrid GF/MM and SIE MM for-
mulations. As with the first geometry, the GF /MM
program with 8 total unknowns gives nearly identi-
cal echo width predictions as the SIE MM program
with over 300 unknowns. Table 1 shows that the
hybrid GF/MM program executes nearly 30 times
faster than the SIE MM program for this geometry.

The third perturbed geometry consists of a sin-



Echo Width vs Bistatic Angle
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Figure 5: Bistatic Echo Width for Geometry #3:
afArg =05,¢,=20,Q, = {5:0.5< p/Ao < 0.567,
~33° < 6 < 3.3}, U = {F:0433 < p/Ag < 0.5,
3.3° < |¢| < 10°}.

gle protrusion sandwiched between two identical in-
clusions. The protrusion occupies the region 0.5 <
p/An < 0.567 and —3.3° < ¢ < 3.3°, and is filled
with a dielectric having relative permittivity ¢, =
g, = 2.0. The top and bottom inclusions occupy the
regions 0.433 < p/A; < 0.5 and 3.3° < |¢| < 10°.
Both inclusions are unfilled; that is, 55 = 1. As
shown in Figure 5, the hybrid GF/MM formulation
with 3 unknowns gives nearly identical echo width
predictions as the SIE MM formulation with over
350 unknowns. The time savings reaped by the hy-
brid GF/MM formulation relative to the SIE MM
formulation exceeds 100.

8 Conclusions

This paper has presented a technique (the hybrid
GF/MM) to increase the efficiency of the method of
moments when calculating the scattering properties
of geometries that are sufficiently “close” to a canon-
ical geometry. The technique was developed in de-
tail for the case of a homogeneous dielectric cylinder,
although the technique may be applied to any pene-
trable geometry for which the Green’s function can
be found. Excellent agreement was shown between
the hybrid GF/MM and standard MM formulations,
and considerable savings in computer requirements
were reported.
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