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ABSTRACT

This paper is concerned with the use of time- and frequency-domain methods for
computing the interaction of electromagnetic waves with simple and complex structures. An
example chosen for this study is a cubic box with the top open. The Finite Difference Time
Domain (FDTD) method is used for computing time-domain responses to an electromagnetic pulse
(EMP), a Gaussian pulse, and a sine wave. Frequency-domain results are obtained by using a
moment method solution of the electric field integral equation (EFIE). Comparison is then made,
both in the frequency and time domains, on corresponding quantities using Fourier transforms.
Effects of various factors — the shape of the incident waveform, discretization of the structure, and
Fast Fourier Transformation — on the CPU time and the accuracy of the solution are demonstrated.
Guidelines are established for obtaining an accurate response.

INTRODUCTION

Use of time-domain methods such as the FDTD for modelling a wide variety of
electromagnetic interaction problems has been increasing in popularity for a number of
years. Application of the FDTD methed has included modelling very complex structures
such as the human body, microstrip and microwave structures, radar cross-section
computations and inverse scattering [1]. Response can be obtained directly in the time
domain, or in the frequency domain through a fast Fourier transformation (FFT).

Frequency-domain codes such as the NEC [2] and JUNCTION [3] have also been
extensively used for electromagnetic analysis of a wide variety of structures. Response
obtained in the frequency domain can be converted to time domain using an inverse fast
Fourier transformation (IFFT).

The choice between a frequency-domain method and a time-domain method for
modeling and analyzing a specific electromagnetic interaction is not always
straightforward. This paper investigates the effect of a number of factors on the accuracy
of the solution obtained. These factors include incident field wave shape, structure
discretization, Fast Fourier Transformation (FFT or IFFT), and computer time
considerations.
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PROCEDURE

A perfectly conducting cubic box with an open top is chosen for this study. A
plane wave with an EMP or a Gaussian or a sinusoidal waveform is assumed to be
incident on the open face of the box. The FDTD method is used to compute time-domain
fields at various points inside and outside the box for incident plane waves with different
waveforms. Frequency-domain response is obtained by taking a FFT of the time-domain
response. The frequency-domain responses thus obtained for various waveforms are
then compared with the response obtained by using the moment method implementation
of the electric field integral equation (EFIE). A de-convolution with the incident waveforms
results in a waveform-independent frequency response. This results in a frequency-
domain comparison.

For a time-domain comparison, the results obtained with the EFIE method are
transformed into the time domain using an IFFT. A convolution with the incident
waveforms results in the time-domain responses. These can then be compared with the
responses obtained by using the FDTD method.

Since both the FDTD method and the EFIE method have been well described in
the literature only a minimal description essential for this paper is given here. The theme
of this paper is the comparison of results obtained from the two methods, rather than the
intricacies of the methods themselves.

a. FDTD Method:

The FDTD method is a direct implementation of the time-dependent Maxwell’s
equations:
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The finite-difference procedure proposed by Yee [4] positioned the E and H fields at
half-step intervals around a unit cell as shown in Figure 1, where £ and H are evaluated
at alternate half time steps, effectively giving centred difference expression for both space
and time derivatives. For example, taking one of the three partial differential equations
associated with each of the vector equations above gives
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where ¢, p,and o are respectively the permittivity, permeability, and conductivity of the
specified coordinates in the lattice space. 8x, 3y, and 8z are the cell dimensions, and
3¢ is the time between successive calculations (.e. the time step size). For a function F(x,y, 2, )
of space and time, F”(i,j,k) is Yee’s notation for the value F(iéx,jdy,k8z,n8t).

The complete system of six finite-difference equations then provides a
computational scheme: the new value of a field vector component at any point depends
only on its previous value and on the previous values of the components of the other field
vector at adjacent points. Thus at any given time step the computation can proceed one
point at a time for a single processor or several points at a time for a machine with
parallel processors.

While not the subject of this paper, the following comment on the FDTD algorithm
may be of interest. The finite-difference form (3) is obtained from (2) by the
approximation
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This approximation is used in many FDTD studies (e.g. [1]). Others (e.g. [5], [6]) have
used the approximation

o E(x,y,z,1) = 0 E"{i,j. k) (5

and obtained good results. The approximation (5), however, may lead to instability if

adtje > 1 (6)

In this work, the approximation (4) is used. But even if we had used approximation (5),
because of our special treatment of boundaries for perfectly conducting bodies we would
still have had stable results. For a perfectly conducting body, we have a boundary-

checking algorithm that selects the boundary faces on which to set the tangential E-fields
to zero. This boundary is thus a “sharp” one of zero thickness and not a “fuzzy” one-

cell-thick wall with a huge o. For a dielectric surface, we use a "harmonic mean”
method to smooth out the boundary transitional effect. Another necessary key for stability

of the time-stepping algorithm (3) is that the time step 8t is chosen 1o satisfy

-
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b. EFIE Method:

Reference {7] describes a simple and efficient numerical procedure for scattering
by arbitrarily shaped bodies, using the moment method to solve the electric field integral
equation (EFIE). The object surface is modelled by using planar triangular patches (for
example, Figure 2). Because of the EFIE formulation the procedure is applicable to both
open and closed surfaces. The procedure has been applied to a wide variety of
electromagnetic interaction problems and has yielded excellent correspondence between
the exact formulations and other methods. In JUNCTION, the EFIE approach is extended
to analyze an arbitrary configuration of conducting wires and bodies. The algorithm
developed can handle wire-to-wire , surface-to-surface and wire-to-surface junctions. A
modified version of JUNCTION is used here as the "EFIE method”.
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PLANE WAVE FORMS

In this study, the time-domain incident wave on a structure is a plane wave with
one of the following three shapes:

a. the nuclear electromagnetic pulse (NEMP) [8]

£t - B —= (8)
‘| + 9(“*’9)'

with E, = 5.126x10*Vm', « =1.027x10°s", and B = 3.906x10° s (see Figure
3a). [Note this pulse has a peak value of 50 kilovolts per metre at 10 nanoseconds, a 10
to 90 percent rise time of 5 nanoseconds, and a decay time to half-value of 200
nanoseconds.]

b. the Gaussian pulse

Et) = E, e'n(";) ©)

with E, =100V m', and T = /n(m-81), where &t is the time step size and m is the

"pulse width” parameter: when t = m-8t, E(t) = E/e = 0.37 ‘E,. Figure 3b shows
two different pulse widths.

¢. the sine wave

. [ 2nt
t) = £rt (10)
Et) = E sm( -at)
with £, = 1V m”, andfrequency £ = 1/(N31) [ ©, = 2n/(N-8t) ], where N isthe

number of time steps of &t each, whence N-6t is the period. Figure 3c shows ten
cycles of the sine pulse with a period of 5 ns, hence a frequency of 200 MHz.

Note the different abscissa and ordinate scales used in Figures 3a-3c. These three
waveforms, when fast-Fourier transformed into the frequency domain, have the frequency
spectra shown in Figures 4a-4c.

For the NEMP, note that the frequency spectrum reaches 1% of its peak value at
about 100 MHz, 0.1% at about 220 MHz, and 0.01% at about 330 MHz. From 400 MHz
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on numerical noise enters into the FFT process.

For the Gaussian pulse, note that narrower time-pulses have wider frequency
spectra, and that 1% and 0.1% of peak values in frequency spectra are reached in the
Gigahertz range (in our example where 8t ~ 4x10™"" ). For the m =12 case, 1% is
reached at about 1.5 GHz and 0.1% at about 1.8 GHz, and numerical noise dominates
(i.e. the real signal falls below the "noise floor” value of about 107'°) after 2.5 GHz. For

the m =6 case these “"break points” are about doubled.

The theoretical frequency spectrum of the sine pulse is, of course, the delta
function centred at £,. Figure 4c shows the FFT representation of &(f-£), i.e. the sinc
function. (Figure 4c is the only one among 4a-4c that shows a “truncation effect”. In
figures 3a and 3b, the time-domain values of the pulses are taken until the pulses have
"gone through”, i.e. until the pulse values are negligible, so the frequency spectra in
Figures 4a and 4b are “complete”. This is, of course, not possible in the sine wave 3c.)

FDTD RESULTS FOR AN OPEN BOX

We use, as the example in this study, a perfectly conducting cubic box with an
open top, and an incident x-polarized plane wave propagating in the -z direction. Each

edge of the cubic box is 30 cm, and the x, y, and Z coordinates range from 0 to 0.3m.
The cubic box is divided into 13x13x 13 Yee cells, centrally located within an FDTD cell
space of 60x60x60 cells. Four field points are chosen for comparison between their

time- and frequency-domain £, -field responses. These points are labelled A,B,C,D and
are at a distance of 0.0577m from the " x=0"-wall, 0.1385m from the " y=0"-wall, and
0.0923, 0.2077, 0.3000 (at the “mouth” of the box), and 0.5077 (“outside” the box)
metres from the bottom ( Z2=0) of the box, respectively. Since each cubic Yee cell has
an edge length of 0.3m/13 = 0.0231m, these field points are 2.5 space steps from the
"back”, 6 space steps from the “side”, and, respectively, 4, 9, 13, and 22 space steps
from the bottom. [The x-coordinates are half a space step off because in the Yee cell,
the E,-field component is evaluated at (x+3x,y,2).] Figure 5 shows the boundary faces

of this open box, on which the tangential E-fields are set to zero.

Figures 6-8 show the time-domain E,-field response, at the selected field points,
to incident NEMP, Gaussian, and sine pulses.

Figures 9-10 show the frequency-domain E,-field response at the selected field
points, obtained from a fast Fourier transformation with de-convolution of the incident
pulse of the corresponding time-domain curves in Figures 6 and 7. For the responses
to the NEMP in Figure 6, since it was too time-consuming to run FDTD for enough time
steps for them to decay down to close-to-zero values, they are extrapolated for later time
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using a simple exponential decay curve. (It is necessary in the time-to-frequency Fourier
transform for the time-domain function values to reach close to zero for the Fourier
integral not to be “truncated”.) The magnitude of the frequency response (in this case
at 200 MHz) corresponding to the sine pulse in Figure 8 are simply the stationary time-
domain response peak values (also shown in Figure 8).

The corresponding curves in Figures 9 and 10 compare reasonably in an overall
qualitative way. The excessive "wiggling” of the curves in Figure 9 beyond 300 MHz is
due to the numerical noise in the FFT-frequency spectrum of the NEMP curve for higher
frequencies (as noted above). Thus the results in Figure 9 are only reliable up to about
300 MHz. Because for the Gaussian pulse (with m=12) numerical noise does not set
in until after 2.5 GHz, we may be tempted to “trust” the results in Figure 10 for the whole
domain (up to 1.75 GHz) shown. There is, however, another limitation in force. The
spatial resolution of the FDTD box is 0.0231m, and so for reasonable accuracy the
minimum wavelength should be 10x0.0231 = 0.231m, whence the maximum frequency
is 1.3 GHz.

Thus, in the domain 0-300 MHz, the corresponding curves in Figures 9 and 10 are
identical. Also, the frequency responses obtained from the time-domain incident sine
wave in Figure 8 match these curves at 200 MHz. We may therefore conclude that any
one of the incident waves may be used to run FDTD, and within the numerically reliable
part of their frequency spectra, the fast-Fourier transformed response in frequency domain
are comparable. From a computational-time standpoint, it is therefore more efficient to
run FDTD with the Gaussian pulse, as less time steps are needed for completion (i.e. for
the response fields to decay to close-to-zero values).

EFIE RESULTS AND COMPARISON IN FREQUENCY DOMAIN

For the EFIE method in the frequency domain, the same open-topped box is used,
subjected to an incident E_-polarized plane wave travelling in the -z direction at various
frequencies. Several geometric versions of the box are used, representing various
resolution requirements: recall the one-fifth wavelength rule, that the maximum edge
length on the structure must be at most one-fifth of the incident wave length for the field
results to have reasonable accuracy. Two versions are shown in Figure 11.

There are two different ways to represent the frequency-domain response field
data. One way is for a fixed field point, EFIE is run for a whole domain of different

frequencies (e.g. every 10 MHz step up to 1.6 GHz), and the resulting E-field versus
frequency data set is directly comparable to the Fourier-transformed data from FDTD such
as those shown in Figures 9 and 10. A second, more common, way is for a fixed

frequency, EFIE is run for a set of field points (e.g. for the box at (0.0577,0.1385, z) where 2

ranges from -0.1 to 0.6 with 8z = 0.01). To compare the E-field versus location data
set with FDTD, the time-domain FDTD response at many field points are taken and then
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Fourier-transformed to frequency domain, and one value at the particular frequency for
each field point is collected.

As an example of the first type of comparison, consider the field points C =
(0.0577,0.1385,0.3000) and D=(0.0577,0.1385,0.5077). For each field point, EFIE is run
for every 10 MHz, from 10 MHz to 1.6 GHz, and the E,-field values at C and D are
evaluated. The results are the solid curves shown in Figure 12. The dashed curves are
from FDTD, viz the curves in Figures 10c and 10d. The comparison is reasonably good,
and we shall discuss the discrepancies (especially above 1 GHz) in a later section. The
comparison differs from point to point and is better at D (and at other points) than at C.
We shall use the "worst” point C among the four and the “good” point D for further
illustration and analysis.

As an example of the second type of comparison, consider at a fixed frequency
200 MHz, the set of field points {(0.0577,0.1385, z): -0.1 < z < 0.6, with 8z = 0.01}.
(Note that this field line passes through the points A-D.) EFIE is run at 200 MHz, and the
E, -field values at these points are evaluated. The result is the curve shown in Figure 13.
FDTD, on the other hand, is run with (arbitrarily) nine field evaluation points. The resulting
time-domain E,-field data are then transformed to frequency domain, and Eff) at
f =200 MHz at these nine points are the circles in Figure 13. It makes no significant
difference in this case (i.e. at this frequency) which incident wave is used in FDTD, as we
observed in the previous section. Again, the comparison is reasonable, and the minor
differences will be discussed later.

COMPARISON_IN TIME DOMAIN

Comparison between FDTD and EFIE can also be made in time domain. When
the E,-field versus frequency EFIE curves of Figure 12 are inverse-Fourier transformed
to time domain and convolved with the Gaussian pulse, we obtain the solid curves in
Figure 14, which are almost identical to the FDTD results of Figures 7c and 7d (shown
as the dashed curves in Figure 14).

When the EFIE curves are inverse-Fourier transformed to time domain and
convolved with the NEMP, however, we obtain the solid curves in Figure 15. At the fieid
point D the solid curve compares well with the dashed curve, which is the FDTD result
of Figure 6d. But at the field point C, the solid curve is significantly different from the
dashed curve, which is the FDTD result of Figures 6éc.

The key to the explanation of this apparent difficulty in time domain comparison,
at the field point C when the incident plane wave is the NEMP, is in the width of the

frequency spectrum. For the Gaussian pulse with m =12, over the EFIE domain in Figure
12 from O to 1.6 GHz, the frequency spectrum just decreases from its peak value to 0.1%
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(see Figure 4b). Thus the whole data set is significant in the inverse-Fourier transform.
And since the solid curves and the dashed curves in Figure 12 are relatively similar, their
transforms into time domain in Figure 14 are also similar. (The inverse-Fourier transform
of the dashed curves in Figure 12 — i.e. of the curves in Figures 10c and 10d - are of
course just Figures 7c and 7d.) For the NEMP, 0.1% of the peak value is already reached
at about 220 MHz, hence only the low-frequency portion of the curves in Figure 12 are
significant in the inverse-Fourier transforms. (The FDTD curves that should be used here
are actually Figures 9c and 9d, but in the domain from 0 to 220 MHz Figures 9¢ and 10c,
and Figures 9d and 10d - the dashed curves in Figure 12 — are identical.) Observe that
for the field point D in Figure 12, from 0 to 220 MHz, the solid and dashed curves are
very similar, and so their transforms into time domain in Figure 15 are also very similar.
But for the field point C, in the domain from 0 to about 150 MHz in Figure 12, the two
curves are very different, and so their transforms into time domain in Figure 15 are
different. (The inverse-Fourier transforms of Figures 9c and 9d are Figures 6c and 6d,
respectively.)

So the question becomes: why, as in Figure 12 for the field point C, does the
frequency domain comparison not fare well for low frequencies (< 150 MHz)? Here is
where the different geometric versions of the patch-model box become a factor — but not
in the expected way due to the one-fifth wavelength rule.

All the EFIE results presented so far are done with the coarser box in Figure 11,
i.e. the one where the edge of the cube is divided into four equal parts. In this model,

the maximum-length edges are the diagonals, which are v2 x0.3/4 = 0.106 m. Hence
by the one-fifth wavelength rule this box is good for frequencies up to about 566 MHz.
The other box in Figure 11 has the cubic edge divided into ten equal parts, and by the
same rule is good up to about 1.4 GHz. The one-fifth wavelength rule, however, sets a
limitation on high frequencies, and so does not explain the low frequency difficufties. In
fact, the one-fifth wavelength rule may be more stringent than what is observed in
practice. We could run the coarser box up to 1.6 GHz and the results obtained up to
about 1 GHz are very similar to those from the finer box. The use of the coarser box is
the reason why in Figure 12 the two curves do not match well above 1 GHz.

As it turns out, however, the box with the finer grid does give better Jow-frequency
values. The reason is that in the calculation of near fields from the currents on the edges,
there must be a fine enough spatial resolution in the geometric structure to reflect the
highly varying field values, especially when close to boundary edges (i.e. those edges
around the opened top). This "edge effect” seems to be more pronounced at low
frequencies. The numbers on the dashed curves in Figure 16 represent the number of
divisions of the cubic edge into equal parts. Note that there is no significant improvement
in using a finer division than edge/10. Figure 17 shows the corresponding comparison
in time domain. There is still significant difference between IFFT(EFIE) and FDTD.
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FDTD DISCRETIZATION

One limiting feature of the Yee-cell FDTD formulation is that the various
components of the electric and magnetic fields are assumed to be constant within each
Yee cell, thus these field values are “discretized” in spatial steps. We have been

evaluating the E,-field component at (x+&x/2,y,2) in EFIE, because these are the
coordinates where the Yee-cell E,-fields are attached. When we try field points with EFIE
in close neighbourhoods around the points (x+&x/2,y,2), however, we manage to get

good comparison between IFFT(EFIE)*NEMP and FDTD. Here EFIE is run with the
edge/10 finer grid model of the box.

For example, around a neighbourhood of the field point C = (0.0577,0.1385,0.3),
we find that evaluating the EFIE E,-field at C' = (0.0577,0.1385,0.2850) gives the best
match between EFIE and FDTD in time domain. Moving the point C’ slightly in the x
direction yields minor variations in the E,-field, moving slightly in the y direction yields
no change, while moving in the Z direction yields the most significant changes. The best

match is when C' = C - (0.,0.,0.0150). See Figure 18. (We have only tried varying one
spatial direction at a time for simplicity. It is entirely possible that the best match in fact
occurs at a point where all three coordinates differ slightly from C.)

Similarly, for the other three field points, we find the best matches at A’ = A +
(0.,0.,0.0090), B' = B - (0.,0.,0.0140), and D’ = D. Field point C requires the largest
spatial shift for comparison because around the "mouth” of the box, the field values have
the largest variations with respect to position.

Thus, the corresponding field evaluation points that give the best match in time-

domain between EFIE and FDTD are within a spatial step 82 in the Z direction of each
other (i.e. within the same Yee cell). This is accountable as “discretization error”, as the
FDTD fields are discrete approximations of the "smooth" EFIE fields. Figure 19 shows
the origin of this discretization error. The “central differencing scheme*® of the FDTD

approach approximates the derivative of a smooth function f(x) at a point a by

%f((a) = %;(a) = f(a+g) ; f(a_g) (11)

where h is the differencing interval. But the value of this “approximate derivative” is not
necessarily the exact value of dffdx at a. The mean value theorem for derivatives in
elementary calculus only guarantees the existence of a value a’ somewhere between
a-hl2 and a+hf2 with
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This is why the exact match between EFIE and FOTD occurs not necessarily at the same
field point but within a spatial step.

(An alternative hypothesis exists for the non-correspondence between the FDTD
field point and the EFIE field point: in [9] it is stated that the discrepancy may be due to
FDTD 's spatial approximation at the box surface. But this “fuzzy boundary” is an artifact
of using an FDTD body with a one-cell-thick wall. Our version of the FDTD model for a
perfectly conducting body, as we mentioned before, has a “sharp” boundary of zero
thickness. The uncertainly in the distance of the field point from the surface of the body
is, therefore, not an issue in our algorithm.)

Theoretically, therefore, if h is made smaller, the difference between a and a’
may become smaller. That is to say, that if FDTD is run with smaller celis (finer
resolution), the spatial difference between matching FDTD and EFIE field points will be
smaller. But using smaller cells also means more cells, and then computer memory and
running time become factors.

CPU-TIME CONSIDERATIONS AND MODELLING GUIDELINES

We have shown that in computer simulations of the interaction of electromagnetic
waves with geometric structures, both time- and frequency-domain codes may be used.
The two independent methods are comparable - as long as proper precautions are taken
— and can be used as verification of the accuracy of each other.

From an efficiency, i.e. CPU-time economy, point of view, the FDTD method with
an incident Gaussian pulse is the approach of choice. For the open box example,
running EFIE takes about 3 hours of CPU-time on a VAX 6420 for each frequency,
running FDTD with the Gaussian pulse (2000 time steps) takes about 6 hours, and
running FDTD with the NEMP (10000 time steps) takes about 30 hours (and the latter still
needs further extrapolation). Other geometric structures also have a similar CPU-time
ratio, that the CPU-time taken for EFIE(one frequency) :: FDTD(Gaussian) :: FDTD(NEMP)
is 1::2::10.

The reason that FDTD(Gaussian) is the most efficient is that the time-domain
response decays back to zero rapidly, and that after a complete run, one can Fourier-
transform the results (with de-convolution of the Gaussian pulse) and obtain the field
response for all frequencies (within the wide frequency spectrum of the Gaussian pulse).
In other words, in the time it takes EFIE to run two frequencies, the process
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FFT/Gaussian [ FDTD(Gaussian) ] = EFIE(all frequencies)

gives the whole frequency spectrum of responses. Because frequency-domain response
comparison, with FFT(FDTD) versus EFIE, has been shown to be reasonably accurate,
this process is a reliable and time-saving method in obtaining frequency-domain data.

In time domain, if one simply wants the earlfy-time response to the NEMP, one may
run FDTD(NEMP) directly. If, however, one is in fact interested in the /ate-time EMP
response, one can run FDTD(Gaussian), then Fourier-transform to frequency domain with
de-convolution of the driving Gaussian pulse, and then inverse-Fourier-transform the
frequency-domain response thus obtained and convolve with the NEMP; i.e. through the
process

IFFT [ FFT/Gaussian [ FDTD(Gaussian) ] | * NEMP = FDTD(NEMP).

This way, FDTD only has to be run for the small number of time steps that an incident
Gaussian pulse requires, instead of the long duration of the NEMP pulse. Several EFIE
runs at selected frequencies and a direct FDTD(NEMP) run (for a smaller number of time
steps) can always be used as checks to insure accuracy of this approach.

Thus, in summary, the merits of the FDTD method with an incident Gaussian pulse,
followed by a time-to-frequency Fourier transform, are:

a. large frequency content of the incident pulse,

b. pulse decays down to zero rapidly, minimizing running time, and

c. efficiency: one time run to obtain all frequencies.
(Note, however, there is nothing "magical” about the Gaussian pulse itself: any time-
domain pulse of narrow pulse width would share the same merits. The Gaussian pulse
is chosen because of its simple analytic form and because it is a “standard”.) The main
disadvantage is due to computer resources, that only the chosen field quantities at
several specified points are written to the output (although all six field components at all
the Yee cells are evaluated at each time step, due to the constraint of the size of the
output file only those chosen ones are written out). The code must be run again for
computation of other field components and at other points. (As a contrast, in EFIE the
currents on all the edges are stored in an output file. So the field values at any other
points at the same frequency can be calculated from this “currents file” and EFIE does
not have to be rerun.)

Time-domain response comparison has some inherent inaccuracies, mainly due
to the fact that difference equations are by definition approximations to differential
equations. In FDTD versus IFFT(EFIE), care has to be taken in finding the correct field
locations for direct comparisons. Freguency-to-time inverse Fourier transformation also
has some inherent problems. For a complete time-domain response it is less efficient
from CPU-time considerations as described before. In addition, even for early-time
response determination one still has to calculate the frequency response at a large
number of frequencies to obtain an accurate IFFT into time-domain.
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Finally, it must be remembered that discretization errors can be significant. In the
FDTD approach one must keep in mind that the minimum reliable wavelength is ten times
the size of the Yee cell (hence setting the limit for the maximum reliable frequency). Also,
using smaller cells (hence more celis), within the limit of the host computer, to model the
geometric object may improve the accuracy of the comparison. The availability of the
field quantities only at discrete points due to the lattice structure can create some
problems. In the frequency-domain code EFIE, discretization affects both the high and
the low frequencies: on the one hand there is the one-fith wavelength rule we discussed,
setting the limit for the maximum frequency, and on the other hand at low frequencies
there must be enough spatial resolution to reflect highly varying fields in neighbourhoods
of "boundary edges”. It must be remembered that the discretization guideiines of "10
cells/A" and “edges < A/5" are “traditional” ones based on experience from many
studies in computational electromagnetics. They are sometimes more stringent than
necessary and useful results may be obtained even above the high-frequency threshold.
This is why in some of our figures (notably Figure 9) we have presented the high-
frequency results well above the threshold. The point of caution is that if the guidelines
are violated, one must seek independent verification of the results obtained.

CONCLUSIONS

In this paper, the penetration of electromagnetic waves inside an open-topped
cubic box has been studied. The FDTD code has been used to calculate the time-domain
response for an EMP, a Gaussian pulse, and a sine wave. Comparison, in both time and
frequency domains, has been made with the results obtained by using the frequency-
domain method EFIE. Effects of various factors such as wave shape, structure
discretization, and fast Fourier transformation on CPU-time and accuracy of the results
were discussed. Guidelines for using the time-domain and the frequency-domain codes
were suggested. It was found to be more efficient in most cases to use the time-domain
method.
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Figure 1. Position of the field components in a unit cell of the Yee lattice.
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Figure 5. The open-topped box used in FDTD studies
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