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ABSTRACT. This  paper  describes
improvements in modelling Maxwell's equations
in two dimensions using the electrical network
analogue. Two network models are described
with major emphasis placed on diffusion
dominated problems. The first one is the
combined fine-coarse mesh approach which
was initially developed for the method of
transmission-line  modelling (TLM). The
combined fine-coarse mesh technique is then
modified by introducing controlled sources at
the interfacing between the fine and the coarse
mesh. Several numerical experiments,
including one with both a conducting region
and free space, are used to study the two
models. They are also compared with the
standard network analogue using a regular
meshing. Numerical results are compared with
analytical or published data.  In all cases,
SPICE ( or PSPICE) has been used to solve the
resulting network analogues.

1. INTRODUCTION

In 1944 Kron [1] derived an electrical circuit
equivalent of Maxwell's equations and
subsequently many researchers had used
electrical analogues to simulate Maxwell's
equations [2-4]. In general, the electrical
analogue is built around R, L and C
components and the appropriate electrical
quantities measured experimentally. With the
advent of digital computers, numetical methods
such as the finite-difference and finite-element
[5] became popular and the use of experimental
methods became unattractive. However, it is
sometimes desirable 1o have a physical
electrical network analogue for the field region
to be modelled and in addition. standard
network solver can be used to solve the
resultant network analogue without the need of
a special finite-element program. for example.
Solutions can be sought without the prior
knowledge of numerical analysis/methods. In

this paper, SPICE! (or PSPICEZ) which is now
a de facto standard circuit simulator in
electronic engineering, is used to solve the
resulting network analogue. Another advantage
of the network analogue is that it can be used to
develop another class of numerical routine,
namely the method  of transmission-line
modelling (TLM) [6]. In principle, SPICE can
also be used to implement the transmission-line
equivalent of Maxwell's equations, however,
this will not be discussed here, because the
routine used in SPICE is relatively inefficient
for solving transmission-line problems.

The electrical analogue with lumped passive
elements is in fact a variant of the finite-
difference scheme (in particular with the
method of lines) where the space is discretized
with a mesh of finite mesh size and the time is
left continuous. One major problem associated
with this method (and the finite-difference) is
that a large number of cells are needed if a
regular meshing is used to cover the entire field
region. To reduce the number of cells, an
irregular meshing can be used [7] as shown in
Fig. 1. This approach cannot drastically reduce
the total number of cells since some regions
outside the area of interest (or where the field
gradient is not very stecp) still need fine
spacings. Another disadvantage of using an
irregular meshing is that it is less
straightforward to implement and is inherently
less accurate [8]. To overcome these problems,
the multigrid algorithm has been introduced.
This method has been used in finite-difference
[9,10] and been successfully applied to the
method of TLM for transient diffusion
problems {11]. This technique solves two (or
more) networks; one with a coarse-mesh grid
and the other with a fine-mesh grid. The coarse
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grid overlaps the fine grid (Fig. 2). The coarse
grid network is first solved and the appropriate
information transferred to the fine grid network
and vice versa. Regular cells are commonly
used although irregular cells can also be used.
In order to reduce the memory requirement,
computing time and the interpolation process
needed in the multigrid technique, a combined
fine-coarse mesh method has been proposed
[12]. This arrangement is shown in Fig. 3,
where it can be seen that the field region is
covered with a combination of fine and coarse
but regular cells. The interface between the
fine and coarse cell is connected by a "busbar”
(Fig. 3a). Therefore, it is only necessary to
solve one network and the need to store (and
transfer) different sets of information is

eliminated. The major drawback of this
approach is that accuracy is sacrificed because
positions "a", "b" and "c" of Fig. 3a are forced
to have the same potential, In this paper a new
network model is proposed. The new model is
based on the combined fine-coarse mesh
technique but the disadvantage associated with
this method is eliminated. This is achieved by
breaking the "busbar” and use controlled
sources at the interface (Fig. 3b). The
performance of the original fine-coarse mesh
approach and the proposed topology is studied
in detail and compared with the standard
technique which utilises cells of equal mesh
S1ZE.
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Fig. 2 A multigrid arrangement with two levels shown.
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2. THE IMPROVED NETWORK MODEL
FOR MAXWELL'S EQUATIONS

2.1 Equivalence between field and network
quantities

Consider a typical regular network cell shown
in Fig. 4a, the describing equations are
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where 1, r, g and ¢ are the inductance,
resistance, conductance and capacitance in per
unit length respectively.

Maxwell's equations in two dimensions are
(assuming that there is only one component of
the H-field)
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where o, £ and dB/dH are the conductivity,
permittivity and differential permeability of the
medium respectively; all units are in per unit

length, Comparing egs. (1) and (2), the
following equivalence can be drawn
H:=vz ; Ex=-iy ; Ey=ix and

oB (3)
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H #

Therefore, an interconnected network of Fig. 4a
forms a space discrete model of Maxwell's
equations. The resulting network may be
solved by various methods. For example, SOR
(successive overrelaxation) can be used for
steady-state problems. For transient problems,
a set of first order ordinary differential
equations can be derived and the solution
obtained by integration using schemes such as
the Runge-Kutta. Alternatively, the time can be
further discretized using finite-difference; this
is similar to the finite-difference time-domain
method. More conveniently, the network may
be solved by standard circuit simulators, such
as PSPICE which is used in the paper. In this
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case, it is a simple matter to generate an input
file describing the interconnections of the cells
shown in Fig. 4a.

2.2 The improved network topology

One major drawback of the network equivalent
(and the finite-difference method) is that a large
number of cells are needed for typical problems
if regular fine cells are used to cover the entire
field region. In many cases, fine cells are used
in regions where the field vanation is less steep.
A number of modifications have been proposed
as reviewed in the Imtroduction. Among the
various methods, the fine-coarse mesh
approach, which has been proven to be a viable
alternative to the multigrid technique, is the
most straightforward to implement. It is only
necessary to provide a number of subcircuits
(each representing a regular network cell of a
given mesh size) for PSPICE. However, this
method assumes that the potentials (=H-field) at
"a", "b" and "c" are identical (see Fig. 3a). This
assumptmn may be unacceptable at high
frequencies, during the initial transient phase or
for some special cases. This problem is
eliminated by breaking the busbar and replace it
by three controlled sources as shown in Fig. 3b.
Parameters associated with each of these
sources may be determined as shown below.

Using Taylor series expansion and with
reference to Fig. 3b, v(z) can be determined in
terms of v(z-1) and v(z+1):

_ 2
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K p =g = 0.5 and the region is diffusion
dominated, eq. (4) becomes

v(z)=0.5(v{(z—-D+v(z+1))

2 dB _dwz

-0.12547 (—0’ )+0(h ) (6)

Eq. (6) has a better error term. Therefore, it is
recommended that the coarser mesh size should
double the preceding one. Likewise, equations
(similar to eq. (4)) can be derived for v(z-1) and
v{z+1).
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Fig. 3 The combined fine-coarse mesh model and the improved model.
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The first term of eq. (6) can be easily
implemented in PSPICE with controlled
sources, however, an additional subcircuit built
from a pure inductor (or capacitor) circuit is
required to model the second term. This is
illustrated in Fig. 5 where the inductor value
(L) equais 0.125h26(9B/3H).
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Fig. 5 A subcircuit model for the second term
of eq. (6).

The accuracy of eq. (6) may be improved if
v(x-1) and v(x+1) are included in the
interpolation. Eq. (6) becomes:

v(z)=0.333(v(z—- D)+ v{z + 1)+ 0.222v(x -1}
aB _dvz

) 1)~ 0. g —= 6
+0.111v(x+1)-0.0833h (aH° a:’ (6a)

However, initial results show that the
improvement gained in using eq. (6a) is
marginal for the examples discussed in the
following section and therefore onty eq. (6) is
used for the improved model.

3. RESULTS

3.1 Flux penetration into a long bar due to
an axial H-field

Figure 6 shows the cross-section of a long
square bar subjected to the excitation of an
axial H-field (H;). The rise of the magnetic
field is determined at two representative
positions ("a" and "bq") when H, is an impact
excitation. Due to symmetry, only one-eighth
of the region (for example, OAB) is solved. In
the fine mesh region, the mesh size, h, is set to
W/8, whereas h = W/4 for the coarse mesh
region. For convenience, normalised units and
all default settings of PSPICE have been used.

Figure 7 shows the results from the different
network models, and they are compared with
the exact solution. Both fine-coarse mesh
models provide results which are very close to
the regular fine mesh model (within 1% for the
period shown) but the computing time is cut by
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at least 50%. The improvement in efficiency is
dependent on the "size” of the problem and a
better gain can be achieved for larger problems.
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Fig. 6 A long square bar subjected to external
H-field excitation.

Accuracy of the network models is best
assessed by their corresponding frequency
responses. PSPICE provides an efficient way
to generate the frequency response curves of
the various models. The results are shown in
Figures 8a and 8b. The problem is similar to
the first case, except that the excitation is
sinusoidal and that only steady-state solutions
are sought.

Tt can be seen that the response curves of the
new model and the regular fine mesh model are
all very close for position "a". The original
combined fine-coarse mesh result trails slightly
behind. At position "by", all three frequency
response curves are similar with the original
combined fine-coarse model stands out
marginally. It should be noted that for the latter
case, h = 1/4. A further error analysis is shown
in Table 1 where the rms error for the different
models are calculated, (Note that the default
tolerance of PSPICE is 0.1% and therefore, the
errors calculated below are mainly due to the
modelling process.)

Table 1 shows that the new model improves the
accuracy by approximately 50% (or better)
when compared with the original fine-coarse
mesh arrangement at position "a". No
advantage is observed at the other position,
however, both show an improvement over the
regular mesh model since fine-mesh
information are available to the coarse mesh.
The relatively poor accuracy at position "by" is
not reflected in the transient curves (Fig. 7)
because the high frequency components are
highly attenuated at this position. This shows
that fine cells are not essential at this region for
transient studies.
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Figure 7 Flux penctration into a long square bar under an impact excitation (position
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(a) Position "a" (h=W/8 and W = 1).
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Figure 8 Frequency responses for the different network models at two representative positions. The
horizontal axis can be converted to the dimensionless parameter (/8)2 by multiplying the factor wh?2,
where & is the skin depth.
rms error, (Position a)
Freq. range new model combined standard, with fine
(h/8) fine-coarse mesh
1 Hz to 20 Hz 1.88% 3.96% 2.30%
(0.222-0.992)
1 Hz to 10 Hz 0.29% 1.13% 0.84%
(0.222-0.702)
rms error, (Position by}
Freq. range new model combined standard, with coarse
(h/8) fine-coarse mesh
1Hzto 20 Hz 19.47% 17.78% 24.44%
(0.443-1.984)
1 Hz to 10 Hz 9.12% 6.45% 12.88%
{0.443-1.403)

Table 1 Accuracy of various petwork models

3.2 Eddy current loss in a long square bar
subjected to a transverse field

The third problem determines the eddy current
loss in a long square bar excited by a transverse
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magnetic field. In this case, the electric field
has one component (E;} whereas the magnetic

field has two (Hy and H
equations are:

y)-

Mazxwell's
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The equivalence between network and field
quantities is:

ve=FEz ;, ix=—-Hy ; iy=Hx ;
JB

l=— : ¢=& and =c 8
3H g 6]

The field in the vicinity of the bar is unknown
and consequently the air region has to be
solved. Ttis assumed that the field is unaffected
by the presence of the bar in regions 2W from
it. Other parameters used are:

B _ .
am M

and ©=10" S/m (in conductor)

£= &0 ; W=1cm

=0 (in free space) )]

For the frequency range used, the reactance of
the shunt capacitor (C = €h) is at least 10 orders

of magnitude larger than 1/(gh) or the reactance
of (h. Therefore, the capacitors are assumed to
be open-circuited. Due to symmetry, only one-
quarter of the region is solved. In this case, the
bar is covered with fine cells with h = 1/6 cm
and the outer part of free space is covered with
coarse cells. The power losses in per umit
volume are determined in terms of P, (power
loss when & = W/2 = 0.5 cm). The results are
plotted in Figure 9. This problem involves two
domains and is relatively large when compared
with the previous two. The memory
requirement recorded was approximately 130 k
and the computing time was about 7.3 seconds
on a standard 486 machine for 8 frequencies.
As a comparison, results using a larger air
region (4Wx4W) and results from reference 13
are included in Figure 9. SPICE3 running on a
SUN workstation has been used for the former
case. The interfacing busbar of the original
combined fine-coarse mesh topology will force
local potentials (= E;) to be identical. In
regions close to the boundary, where Hy is
assumed constant, this assumption (9E /dx
0), along the x-direction, is unacceptable (see
eq. (7)) and may produce erronecus results.
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Fig. 9 Eddy current loss in a square bar due to a transverse magnetic field.
{A) - air region = 2Wx2W,; (B) - air region = 4Wx4W.
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The validity of this approach may be assessed
by comparing adjacent node potentials around
the interface between the fine- and coarse-cell.
Consequently, the use of the original model
must be exercised with care.  On the other
hand, the new model does not have this
limitation.

4. CONCLUSIONS

This paper describes two network models for
Maxwell's equations in two dimensions. The
first model, which is based on the original
combined fine-coarse mesh technique, is very
straightforward to implement. However, it
uses "busbars’ at the fine- and coarse-cell
interface and the resulting error may be
unacceptable in some cases. In the new model
the "busbars" are replaced by controlled sources
and this problem is eliminated. Both models
allow a reduction in the total number of cells
within a field region to be modelled without
compromising accuracy (this may be problem
dependent for the original combined fine-coarse
mesh technique) and can be casily solved by
PSPICE, SPICE or other circuit simulators.
Based on the new network analogues, field
modellers can solve most two-dimensional field
problems without the prior knowledge of
numerical methods or the need of a dedicated
software package.
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