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ABSTRACT. As high-performance parallel codes are
developed or ported to new architectures, it is often diffi-
cult to quantify the the causes of performance problems.
Models of program performance can provide users with
insight into the effect of system and program parame-
ters on performance, can help programmers tune appli-
cations, and can help programmers make decisions about
processor allocation. This paper introduces a modeling
technique applied to the Finite-Difference Time-Domain
(FDTD) algorithm. The technique models the perfor-
mance of an ezisting application in terms of the size of
the problem being solved and the number of processors.
The models show that for sufficiently large problem sizes
the algorithm performs well. However, for smaller prob-
lemn sizes or when too many processors are used, the mod-
els show that parallel overheads become significant.

1 INTRODUCTION

Over the last decade, advances in high performance com-
puting have had a significant impact on computational
electromagnetics. Specifically, with the decreasing costs
of high speed memory, RISC processors, and high speed
networks, the size and complexity of practical engineer-
ing problems that can be solved using full wave analyses
have dramatically increased. Concurrently, the focus of
high performance computing has shifted from expensive
high-speed single processor computers to relatively low
cost multiprocessor computers.

Programming paradigms have changed with the devel-
opment of parallel systems to optimize the performance
of traditional sequential algorithms. Specifically, special-
ized algorithms have been developed to exploit parallel
systems to minimize CPU times and memory usage. Un-
fortunately, in a parallel computing environment, there
are a number of factors that can affect an algorithm’s
performance that are not obvious to the developer a pri-
ori. Thus, an invaluable resource for the development
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of efficient parallel codes is a robust performance analy-
sis tool. Such a utility can enable the programmer to
analyze the code and identify inefficiencies for a spe-
cific architecture. It can also provide insight needed to
fine-tune the algoritbm and optimize its performance.
Furthermore, for a production level code, a performance
analysis tool can provide a close estimation for the opti-
mum rmumber of processors, the optimal decomposition,
and the total execution time for a given problem dimen-
sion and target parallel system.

Techniques for performance tuning of parallel pro-
grams can be broadly categorized imto measurement
based techniques and modeling based techniques. In
measurement based techniques the program is instru-
mented using hardware or software instrumentation
[14, 39, 25, 26]. The instrumented program is executed
and information is collected in the form of trace data and
this data is analyzed to find performance problems. This
process is repeated until the desired level of performance
is achieved.

Measurement based techniques suffer from three main
disadvantages. First, they require multiple executions
of the program on dedicated systems. It can be diffi-
cult for programmers to obtain exclusive access to high-
performance systems for performance tuning. Second,
the instrumentation used during program execution can
change the behavior of the program. This can make it
difficult to determine how the program would behave
without instrumentation. Finally, with measurement
based techniques it is difficult to predict the performance
if parameters such as the size of the problem, the archi-
tecture, or the type of network change.

Modeling based techniques characterize the perfor-
mance of the program in terms of specific program pa-
rameters such as the algorithm, the communication or
synchronization behavior, the problem size and system
parameters like the number of processors, and network
latency. In addition, performance models can be devel-
oped for existing and non-existing programs or architec-
tures. Models are useful for comparing the performance
of programs on a wide variety of environments as well as
different algorithms for a particular program.

In simulation modeling, the salient features of the
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program and system are used to drive a simulation
/8, 4, 36, 12| . Simulation models offer great flexibil-
ity, however, simulations can require orders of magnitude
more time to run than the actual program. In addition,
accurate simulations require sophisticated and detailed
models that can be difficult to generate. For existing pro-
grams, direct execution simulation techniques have been
developed that greatly improve the simulation time by
using the actual programs which has the added benefit
of reducing the complexity involved in model creation
36, 4, 31].

Performance models that parameterize program be-
havior as scalars or mathematical functions can also be
developed [29, 10, 38, 13, 1]. These models do not require
any time for simulation, however, accurate predictions
still require detailed models of the program and com-
puter system[29, 34, 27]. When modeling existing paral-
lel program, the structure of the program can be used as
the starting point[3, 9, 7, 33]. Techniques for modeling
existing programs typically consist of static analysis of
source codes to gemerate the model structure and run-
time or dynamic analysis to generate the final model.

Several performance modeling tools have been devel-
oped that make use of static and dynamic analysis to
model parallel programs (3, 9, 7. The Modeling Kernel
3], which is a part of the AIMS instrumentation toolkit
[39], models a program based on the duration of sequen-
tial blocks, message lengths and communication phases.
APACHE models programs using separate computation
models and communication models [7]. APACHE instru-
ments the application to determine the computational
requirements, its branching behavior, and the number
and size of messages.

In this paper, a performance modeling technique that

can help programmers to identify problems in programs
or inefficiencies in the interaction between programs and
a given architecture is presented. The technique consists
of a static modeling process based on the actual program
source code and dynamic analysis of the run-time behav-
ior of the program. The dynamic analysis is performed
using only the overall execution time of the application.
As a result, instrumentation to observe communication
patterns or procedures called is not required. This mini-
mizes the intrusion on the run-time behavior of the pro-
gram.
The performance modeling tool developed is applied
to the analysis of the performance of the finite-difference
time-domain (FDTD) solution of Maxwell’s equations
37, 35]. The FDTD method is based on an explicit
time-marching solution and has the advantage that time-
variant electromagnetic fields can be accurately and effi-
ciently modeled within inhomogeneous, non-linear, and
anisotropic media.

The FDTD algorithm is an excellent algorithm for par-

ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, SI: CEM & HPC

allel computer systems. The kernel of the algorithm is
a directly addressed sparse matrix-vector multiply and
can be efficiently implemented using a simple nested
loop structure. Implementation on parallel computers
requires message passing only between neighboring pro-
cessors, and has lead to a highly scalable algorithm
(18, 23, 30, 11]. By exploiting parallel architectures
based on high-performance RISC processors, the prob-
lem sizes that can currently be efficiently solved using
the FDTD are orders of magnitudes larger than prob-
lems that could have been treated a few years ago.

In this paper the parallel FDTD algorithm is pre-
sented. The algorithm is based on the traditional Yee
algorithm [37, 40} with a uniaxial PML absorbing media
132, 20, 19]. The performance modeling techniques show
that for sufficiently large problem sizes or small numbers
of processors, the FDTD algorithm performs quite well,
When the problem sizes are small (or number of proces-
sors large) the models show that the parallel overheads
can become significant and performance decreases. The
models also uncovered a performance problem for a par-
ticular processor configuration in FDTD. By restructur-
ing loops that communicate boundary information, the
performance was substantially improved.

2 THE FDTD ALGORITHM

The finite-difference time-domain algorithm is a direct
solution of Maxwell’s equations for the electric and mag-
netic field intensities in a finite, piecewise homogeneous
space. The algorithm is based on the discretization of
Maxwell’s curl equations (Ampére’s and Faraday's Laws)
using central difference approximations of the spatial and
time derivatives. This is achieved by projecting orthog-
onal components of the vector fields onto the edges of a
dual, staggered, orthogonal grid. By staggering the vec-
tor fields both in space and time, a second-order accurate
explicit time-marching solution is obtained [37].

One of the most challenging aspects of the FDTD
method is implementing an absorbing boundary condi-
tion that can accurately truncate the mesh over broad
frequency bands. The perfectly matched layer (PML)
absorbing media introduced by J. P. Berenger [2] has
been demonstrated to be a highly effective method for
the termination of FDTD lattices [6, 28, 22] and can re-
sult in reflection errors as minute as -100 dB. Recently,
it has been shown that the PML method can be reposed
in a Maxwellian form as a uniaxial anisotropic medium
(32, 20, 19]. It has also been demonstrated that the uni-
axial medium can be perfectly matched to a lossy, inho-
mogeneous, dispersive, isotropic and anisotropic medinm
[20]. Most significant is that the extension to such com-
plex media in 2 FDTD implementation is quite trivial.

The time-dependent electric and magnetic fields
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within the uniaxial PML are computed using an explicit
time-marching solution scheme, as derived in [20, 19].
The uniaxial PML can be easily and efliciently imple-
mented within the framework of an existing FDTD code.
For example, posing a uniaxial PML throughout the en-
tire space, the discrete field updates can be expressed as
a triple-nested loop (illustrated here in FORTRAN):
do 10 k = I,nz-1
do 10 j = 2,ny-1
do 10 i = Z,nz-1
ds = dz(i,7,k)
d2(i,3.k) = ay()*da(isk) +
by(.?) *[hy(i;j:k)‘hy(i'l’j;k)'
hx(i:j’ k)-f-ha:(i,j—l,k)]
ex(ijik) = az(i)*ex(ijk) +
bx(i)*[az(k)*dz(i,7,k)-bz(k) *ds]*
ery (1,3,k)
10 continue

where
( ) _ 2ephy, —0y. A by( ) _ 2eq At Az
I = Zegr,, Foy, a0 TN T Zegny +o, Bt BeAy’

. 2e08Rz, —0x. Al . Bea At
. — £g
Gl‘(i) T Zeghg toy AL b:l!(‘t) T Zeoha oL AL

az(k) = F4 + 5=, ba(k) = Fr — 52,

er:(d, j, k) = SDGrIi!jlk)

and the fields have been scaled by their edge length (e.g.,
E. = AzE;). It is noted that the PML parameters o;
and &; (i = z,y, z) are one-dimensional variables. Specif-
ically, in the interior working volume, it is assumed that
o; = 0, and k; = 1, and in the PML regions, they are
assumed to have an m-th order polynomial spatial vari-
ation along their respective axes. As a resuit, the up-
date coefficients above are simply one-dimensional coef-
ficients.

Updating the fields over all space has the limitation
that the additional storage arrays required to store the
flux densities (e.g., Dz) must be stored over all space.
However, it does offer the advantage of simplicity in the
modification of existing codes. An alternative is to write
a triple nested loop for the interior fields, and then write
separate loops for the different PML regions (segregating
corner regions). Then, only the auxiliary variables need
to be stored in the PML regions, leading to memory sav-
ings. In this circumstance, the uniaxial PML will require
considerably less storage than Berenger’s PML, because
only the normal fields require dual storage as opposed to
the two tangential fields as required by Berenger’s PML
formulation. Based on this scheme, the FDTD with a
uniaxial PML truncation on all 6 boundaries will require

6N, N, N, + 8Npmi(Ne Ny + Ny N, + N.N;)—

16 Npmt(Nz + Ny + N;) + 24N5,

1The readers are referred to these references for the general
theoretical development of the uniaxial PML.
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real numbers as compared to 12N N, N real numbers
required by a FDTD method with PML everywhere [21].

In this paper, the UPML is assumed to be distributed
throughout the grid. While this increases the memory
overhead, the overall computational time is slightly bet-
ter than the case when the grid is split up into multi-
ple regions [21]. Furthermore, load balancing is readily
achieved.

3 PARALLEL IMPLEMENTATION
OF THE FDTD ALGORITHM

It has been demonstrated that the finite-difference time-
domain algorithm is well suited for implementation on
tightly coupled distributed memory high performance
parallel computers {30, 5, 15, 18]. This is principally
due to the regularity of the dual grid and the even dis-
tribution of effort throughout the grid during the entire
time-marching solution. Furthermore, only the magnetic
fields tangential to the shared boundaries needed to be
communicated between processors each time iteration
[18]. The algorithm presented in this section is primar-
ily focused on distributed memory multicomputers with
a single program multiple data (SPMD) paradigm.

The parallel algorithm is based on a spatial decompo-
sition of the regular, orthogonal FDTD lattice. To this
end, the original domain is spatially decomposed into
contiguous sub-domains. The sub-domains are rectangu-
lar in shape, non-overlapping, sharing common surfaces
only, and are of equal size. The boundaries, or surfaces,
shared by sub-domains are chosen by taking slices along
edges of the primary grid along the x, y, and z-directions.
Each sub domain is then mapped directly onto indepen-
dent processors of the parallel computer.

Assume that the lattice has dimension N, x N, x N..
The lattice is then discretized using a three-way dissec-
tion. Essentially, assume that the lattice is mapped onto
a three-dimensional grid of processors ( Py, Py, F;), where
P., P,, and P; are the number of subsections along the
x, y, and z-directions, respectively. (Also, the total num-
ber of processors will be P = P,P,P.). Then, given a
global grid with dimensions N, Ny, and N., each pro-
cessor will be assigned a block of the grid with dimen-
sions N, /P,, N, /Py, and N, /P, . For most applications, -
these ratios will be non-integer values, and the sizes of
the grids will be slightly uneven, resulting in some load
imbalance.

The local grid dimension for each processor, given as
nIp X nyp X nzp, can be uniquely determined using a
simple algorithm. Each processor is first assigned a coor-
dinate (pg,py,P:), where p: € (1, P),py € (1, Fy), and
Pz € (1, P;). Then, each processor can uniquely deter-
mine its grid dimension nzp along the x-direction using
the algorithm
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nap = aint(Nz/P:)

if(mod({Nz, Py ).le.p: )nap = nzp + 1
where, aint() is the FORTRAN intrinsic function which
truncates the argument to an integer, and mod() is the
modulus FORTRAN intrinsic function which computes
the remainder of the quotient N./F,. This algorithm
assures that no processor has more than one additional
row of the grid than any other processor. The dimen-
sions nyp and nzp can be computed in a similar manner.
The parallel algorithm will then consist of updating all
fields assigned to each processor independently, with spe-
cial consideration for discrete field components that lie
on the boundary interfaces shared by two sub-domains.

The spatial decomposition is chosen to slice along the
primary lattice grid faces. Specifically, in the boundaries
shared between any two processors, the discrete electric
field vectors in the planar boundary are tangential to the
surface. Thus, the discrete magnetic field vector is nor-
mal to the boundary interface. The fields on the shared
boundary interface are redundantly stored in memory on
both processors sharing that boundary. Due to the de-
composition described, multiple processors can share a
lattice edge. The discrete electzic field vectors associated
with the edge are assumed to be stored redundantly on
all processors sharing the edge.

The magnetic field vectors normal to the shared in-
terface can be updated independently on all processors
sharing the face. The update is proportional to the line
integral of the electric field about the edges bounding
the face. Because each processor has the updated value
of the tangential electric fields on the shared interface,
the normal magnetic field can be updated independently
on each processor. Therefore, interprocessor communi-
cation is not needed when updating the magnetic fields
within each sub-domain. Rather, it is much more expe-
dient to simply update the normal magnetic fields in the
shared boundary redundantly on each processor sharing
the face.

On the other hand, the discrete tangential electric
field vectors on the shared boundary interface do not
have enough information locally to perform the update.
For example, consider an edge shared by two processors.
Three of the four magnetic field vectors needed for the
update are stored in local memory. The fourth mag-
netic field vector, which is tangential to the interface, is
in memory on the adjacent processor. Hence, this data
must be communicated to the local processor before the
update can be completed.

The parallel algorithm performing the parallel FDTD
algorithm is illustrated in Figure 1. The first step is to
update the magnetic field intensity in all space. The
next step is to send the magnetic field vectors tangential
to the shared boundary (one-half cell removed) to the
neighboring processor, while receiving the complimen-
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tary magnetic fields across the shared face and storing
them in a local vector. To reduce the effects of message
passing overbead, all the discrete magnetic fields to be
communicated to a given processor are first combined
into a single buffer and then sent to the adjacent proces-
sor. The electric fields are then updated, including those
on the shared boundary. Note that the electric fields on
the shared boundaries are updated redundantly on each
processor to avoid additional communication.

initialize e,h to zero
do it = 1, maz_iterations
call source_update
call h_update
call communicate. h_field
call e_update
enddo

Figure 1: Parallel FDTD Algorithm

It will be shown that the algorithm described is quite
scalable. However, because the interprocessor comrmu-
nication must be performed at each time step, the ef-
ficiency of the parallel algorithm will ultimately stag-
nate as the number of processors is increased for a fixed
problem size, as predicted by Amdahl’s law. It will be
shown that the performance analysis tool described in
the following section can predict the optimum nurmber
of processors for a given problem size.

4 MODELING TECHNIQUE

Qur approach to model the performance of parallel pro-
grams is by analyzing the structure of programs and then
measuring the performance from actual program runs as
key factors of the application and architecture are varied.
This information is used to create a closed-form expres-
sion for the execution time of the program in terms of
those factors.

The performance of a parallel program depends on
many different attributes from architecture details to the
structure of the algorithm. Some of these factors are un-
der the control of the user and can be changed to improve
performance. However, there are other factors that ei-
ther can not be changed or the changes cannot be con-
trolled by the user. While modeling techniques similar to
those presented here can be used to model other factors
affecting program performance (e.g., processor speed},
the goal of the modeling technique presented here is to
assist users in modeling programs primarily in terms of
factors that can be controlled by an end user of a given
parallet machine.

Examples of factors that are constant or change very
rarely include the speed of the processors, the type of
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interconnection network or its topology, or the size and
speed of memory. While these factors directly influence
performance, they can not be changed in a typical end-
user environment. These factors are assumed to be con-
stant and are included implicitly in cur models.

Factors affecting performance that can change, but
may not be under the control of the user, include the
external load on individual machines or external load
on the network {which can impact latency and available
bandwidth). If the parallel machine is dedicated to a
single user, these factors will not be a concern. How-
ever, for a typical distributed system these factors can
greatly impact performance. These factors are implic-
itly included in the models if the dynamic analysis can
be done with these factors at values similar to those that
will be present when the program is used.

Typical factors that the user can control include the
size of the problem, the number of processors used, and
the algorithm used. The modeling approach presented
here analyzes the program structure in terms of the con-
trol flow, loop structures and the communication and
synchronization events.

During the static analysis phase, the program source is
analyzed to generate a model template for the execution
time. The model is based on identifying the basic blocks,
loops, function calls, communication, and synchroniza-
tion events. By determining the bounds on loops and
the number and size of messages in terms of the problem
size (S) and the pumber of processes (P), it is possible
to determine the terms that will appear in the execution
time model. A static model for execution time in terms
of § and P is generated.

The final model of execution time is found by deter-
mining the coefficients of the terms in the static model.
These unknown coeflicients are estimated using regres-
sion on execution time data gathered during run-time.
The following sections describe the approach in detail.

4.1 Static Analysis

The execution time of a parallel program can be divided
into three categories. These are:

e Computation Time: This is the portion of time
spent in performing actual computation.

s Parallel Overhead Time: This is the portion of
time spent in exchanging information between the
processes.

#» Synchronization Time: This is the amount of
time that the processes spend in coordinating their
activities.

The computation time is the time spent performing ac-
tual computations that are required in the program. It
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depends on the number of operations performed in the
program, and is often referred to as the order or complez-
ity of the computation. The computational complexity
of a program depends on the number of loops and rou-
tines that are present.

In a parallel program, there is always some overhead
associated with transferring information between pro-
cesses. The amount of time it takes to format and pre-
pare to send a message or to initiate an access to a re-
mote memory location is defined as the Parallel Over-
head Time. This measures only the local time to process
and send a message or to make a remote memory ac-
cess and not the time it takes for messages to propagate
between processes because the transmission time may
overlap with computation or parallel overhead time.

Some form of synchronization between the processes
is required to coordinate the activities in a parallel pro-
gram. This is usually achieved by implementing locks,
semaphores or barriers in shared memory systems or
synchronous (blocking) communication calls in message
passing systems. The time spent by a process blocked
on a synchronization event is defined as synchronization
time. _

To accurately model the execution time of a parallel
program, each of the three categories must be modeled.
The following sections explain the techniques used to
model each of these.

4.1.1 Computation Time

Computation time models are generated by dividing the
program into basic blocks which are the largest consec-
utive blocks of instructions between control flow con-
structs in the program. The structure of each loop in the
program is analyzed to determine the number of times
loops will iterate to find the number of times each basic
block will execute. If it is assumed that the execution
time of a basic block is constant, then the execution time
for a loop is the execution time of the basic block multi-
plied by the number of times the loop iterates.

For example, if the execution time for a given basic
block in a loop is k& then the total time for the basic
block for n iterations of the loop would be k+n. For many
loops it is possible to statically determine the number of
iterations by analyzing the upper and lower bounds of
the loop. Consider a loop ! with an upper bound of u, a
lower bound &, and the stride through the loop is s, then
the number of iterations of the loop can be expressed as:

u—=5
5

I

i

and the execution time for loop ! can be expressed as:

u—=b
S

E=kx =kxI
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If u, b and s are expressed in terms of the problem size
S and the number of processors P, the execution time
can then be expressed as:

E(8,P) =k = L(S, P)

Nested loop structures in programs must also be mod-
eled. Consider a loop g with I (S, P) iterations that is
nested within a loop I. For each execution of the outer
loop, the inner loop iterates I (S5, P) times. Thus, the
total execution time of the outer loop can be written as:

Ez(S,P) = II(S’P)(kO + k1 *IQ(S,P))

This can be generalized to any number of loops within [
as follows:

Ey(S, P) = L(S, P)ko + 3 _ kn * In(8, P)

where I,{S,P) is the number of iterations of the nth
nested loop. It is also possible for procedure calls to be
pested within a loop. If the execution time of a routine
iis R;, the overall execution time of a loop, including
all the nested loops and the procedure calls, is then be
expressed as:

Ei(S,P) = L(S,P)ko+ Y knx In + 3 Ri(S, P))

where R;(S, P) is the execution time of the ith procedure
call within the loop.

The execution time of a routine or a procedure is the
sum of the execution times of all the loops present, as
well as the execution times of ali other calls made within
the scope of the particular routine. The execution time
of the routine can then be expressed as:

Ri(S,P)= E;(5,P)+ > Ri(5P)

where E; is the execution time of the jth loop and Ry is
the execution time of the kth calied function within the
routine. The overall execution time for any application
then becomes the execution time of the main routine.

4.1.2 Parallel Overhead Time

Parallel programs must exchange information through-
out program execution. The time to manage and initi-
ate transfers can constitute a significant portion of the
execution time for a program. The overhead time de-
pends on the number of messages sent and the amount
of information passed.

Communication time consists of two parts, a fixed
overhead and a variable overhead portion. The fixed
overhead is the time that a process takes to initialize
message buffers, set up a network connection with the
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receiver, etc. The variable overhead is proportional to
the size of the message, for example, the time to copy
messages buffers and the time it takes to propagate the
message to the network. In our models, the constant
overhead can be attributed to the basic block in which
the communication call is made. Therefore, the only ad-
ditional term necessary in the model is proportional to
the size of the message. These terms are added to the
computation time model before dynamic analysis.

4.1.3 Synchronization Time

In a parallel program, processors must synchronize to
coordinate their activities. It is not possible to model
the synchronization time through static analysis of the
program, because synchronization time depends not only
on the problem size S and the number processors P, but
also on non-deterministic factors like the load on each
processor and the contention in the network.

Synchronization in message passing parallel programs
is achieved with barriers or synchronous communication
calls. In a barrier, all processes block at a particular
point during their execution and wait for all other pro-
cessors to block. Barriers and global reductions, such
as summing vectors, are implemented with log P al-
gorithms. To model this type of behavior, log P and
P x log P terms are included in the static models.

4.1.4 Static Analysis Tool

A tool to automatically generate the static model de-
scribed in the previous section was developed. The tool,
based on the Sage+-+ parsing toolkit [17], parses the
program to identify all routines, control flow constructs,
communication, and synchronization calls. Each loop in
the program is identified and the associated execution
time model is determined based on the loop bounds. For
loops where it is not possible to statically identify the
pumber of iterations (e.g., a loop bound that depends
on input data), the user is prompted for the value if the
user does not know the number of iterations, a heuristic
is used where the loop number of iterations is assumed
to match the number of iterations of some other loop in
the program. The calculation of overhead times for mes-
sages is also done automaticaily by analyzing the com-
munication calls. If the size of the message can not be
determined statically, again a heuristic can be employed
or the user can supply the expected size. The tool can
determine the execution time of any particular routine.
Analysis of the main routine provides a model for the
overall execution time.
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4.2 Dynamic Analysis

The unknown coefficients (kq, k1, - - +) in the static model
are determined by dynamic analysis to produce the final
model for execution time in terms of § and P. Consider
the equation

Biime = ko + k1% (fr) +ka* (fo) + -+ kn x (fn)

where, f,’s are polynomials of (§,P) and K =
(ko k1, -, kn) are the unknown coefficients. Let this
equation be the execution time model for a hypothet-
ical parallel program. This equation has n + 1 terms
inciuding a constant term. To determine the coefficients
for this expression, it is necessary to have at least n + 1
equations. Hence, at least n + 1 runs of the program
must be performed to generate the final expression. The
system of equations can be represented in a matrix form

as follows:
F(5,P)xK,=E,

where Ky, = (kokiks ---kn)T and E, = (egerea---£a)".
E, represents execution times for unique values of
(8, P). The coeflicient vector K, can be determined from
F(S, P} and E, using:

K, = F(S,P)"! x E,.

All possible combinations of the terms present in the
static model are checked to determine which set of factors
produce the best model. The measure for each model is
the coefficient of determination (R?®) which is defined
as the fraction of the variation that is explained by the
model[27].

We have developed a dynamic analysis tool that au-
tomates the process of model generation. The Dynamic
Analysis Tool generates models for all possible combina-
tions of the terms using least squares curve fitting. The
coefficient of determination for each of the model is cal-
culated and compared. Plots of execution time versus
problem size or the number of processors can be gener-
ated allowing the user to visually compare the models.
Plots of percentage error versus the problem size of the
number of processors are also generated.

5 PERFORMANCE MODELING OF
THE FDTD PROGRAM

The Finite Difference Time Domain (FDTD) program is
implemented in Fortran using the Parallel Virtual Ma-
chine (PVM) message passing library [24], however the
same analysis would result if another message passing
systems was used, e.g., MPT[16]. FDTD was modeled
on two platforms typical of current high-performance ar-
chitectures: an SGI Power Challenge and a cluster of Sun
Hyper-Sparc workstations on a 100 Mbps ethernet.
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The FDTD program consists of approximately 158
loops (this includes all the initialization loops, field up-
date loops, and loops to support interprocessor com-
munication). The majority of the computation takes
place within the triply nested field update loops. How-
ever, it was found that the doubly nested loops used
for interprocessor communication can be non-negligible.
As explained in section 2, the algorithm is based on a
spatial decomposition of the regular, orthogonal FDTD
lattice of dimensions NV, N, and N.. This lattice was
then mapped onto a three dimensional grid of processors
(Pg, Py, P;) to allocate the work to individual processors.
The problem size of the algorithm can be changed by al-
tering the dimensions of the lattice. It is also possible
to change the configuration of the processors in the grid
and thereby changing the manner in which the workload
is distributed. As an example, Figure 2 shows different
processor configurations possible when using 8 proces-
sors. In this paper, it will be assumed that N, = N,
and N, is constant. It will also be assumed that P. =
1. Subsequently, the grid of processors will be two d_1-
mensional (i.e., (P, Py,1)). This is typical of microwave
circuit analysis, where N, << N,, N, [18]. While the
performance analysis tool is not restricted to this, it will
greatly simplify the presentation of data.

Proc 1 !
Proc 2 e p P[P P PP P
Proc 3 rlrfri |l rorrjr
Proc 4 ol ol o ¢f ol ol 0] 0
Proc 5 c‘c clelc]c]cefe
Proc & ' .
Proc 7 L2 37 4| 5| 6] 7| &
Proc &
(a) (b)
Proc 1 Proc 3 Proc | Proc | Proc | Proc
1 2 3 4
Proc 2 Proc 6
Proc 3 Proc 7 Proc | Proc | Proc | Proc
3 6 708
Proc 4 Proc 8 }
(c) (d)

Figure 2: Configurations for Bight Processors; ({a)
(L8.1), (b) (B:L1), (c) (24,0), (d) (4,2.1).

The static analysis tool described in section 4.1.4 was
first used to model the FDTD algorithm. Under the con-
straints defined above (N, = N, and N, = a constant),
the problem size S was set to N;. The model was then
found to be:

Eime=ko+ki* P+ky* N, + kg * N, /P
+ky* N2/P + ks + log(P) + ke * P + log(P)
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where P is the number of processors (P = P, P, P;). This
model includes terms proportional to the size of the prob-
lem ks * Ny, the number of processors kq * P. There are
also two terms that show the computation time propor-
tional to the problem size divided by the number of pro-
cessors ks * N/ P and the problem size squared divided
by the number of processors k4 * (NZ/P). These terms
correspond to the computation being divided among the
processors. It is anticipated that the squared term will
dominate, since for a fixed N;, the field update compu-
tations will be proportional to N, * N, = N

Each communication in the program is modeled by a
constant term and a term proportional to the message
size. Because each communication call is made within
some basic block, and each basic block is modeled with
a constant term &;, the constant term of the communi-
cation call is included in the model of the basic block.
To include the term proportional to the message size, the
communication call is modeled as a call to a routine with
the appropriate execution time. The size of the message
is determined and expressed in terms of N, and P to
generate the model for communication. As described in
section 4.1.3 the static analysis tool also included the
terms ks * log P and kg * P xlog P typical of synchroniza-
tion behavior in parallel programs.

Models in terms of the problem size or the number of
processors alone can also be generated by simplifying the
overall model. The model in terms of problem size is:

Eyime = ko + k1 % Ng + kg x N2

and the model based on the number of processors is:
Eiime = ko+F1 *P+ky *1/P+k3*log(P)—k—h*P*log(P).

Dynamic analysis experiments were run on both the
SGI Power Challenge and the Sun network. On both the
platforms PVM 3.3.11 was used for message passing. On
the SGI, which is 2 shared memory machine, the PVM
shared memory port was used so that messages were ef-
ficiently routed through shared memory. In the cases
illustrated, run-time information was collected for differ-
ent problem sizes varying N and N, from 31 through
131 and the number of processors was varied from 2 to
8. In all cases, N, = 21, and N, = N,. The static and
dynamic models include both the set up time and the
explicit field updates. The simulations were run for 1000
time iterations.

While experimenting with 8 processors, models were
also generated for all the different possible proces-
sor configurations namely (1,8,1), (8,1,1), (2,4,1), and
(4,2,1). The one-way dissections (i.e., (1,8,1) or (8,1,1))
require interprocessor communication in one-direction
only. Whereas, two-way dissections (2,4,1) or (4,2,1))
require communication in two-directions. This poses a
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trade off in the sense that the amount of data communi-
cated may be reduced; however, the number of interpro-
cessor communications per processor is increased. The
loop dimensions alse vary with the geometry of the de-
composition which will also have an affect on the code’s
performance.

Initially, models in terms of problem size were gener-
ated by keeping the number of processors constant at 4,
6 and 8. Based on the static analysis, and a dynamic
analysis for small problem sizes (N; = Ny = 5l and
N, = N, = 61), models for the SGI Power were derived
based on the formulations in Section 5. Both models
were based on a simulation with 1000 time iterations.
Table 1 shows the models for P = 4, 6, and 8.

# of processors ko ky ko
4 6.257 || 0.000 || 0.021
6 -1.067 || 0.000 || 0.016
8 2.845 || 0.000 || 0.011

Table 1: Coefficients for the model Eyime(Nz) = ko +
ki * N, + ks * N2 on the SGI Power Challenge.

This analysis was repeated for the 100 Mbps network
of Sun Hyper-Sparcs. Table 2 shows the size models on
the network of Hyper-Sparcs for P = 4,6, and 8.

# of processors ko k1 ka |
: 4 51.050 || 0.000 || 0.113

6 82.515 || 0.000 | 0.097

8 47.069 || 0.000 | 0.083

Table 2: Coefficients for the model Epime(Ng) = ko +
ky * N, + ko * N2 on the Sun Hyper-Sparcs.

Figures 3 and 4 show the models on the SGI Power
Challenge and the Sun workstations respectively. From
the models it can be seen that the execution time varies
as square of the problem size. This can be attributed
to the fact that the program has a significant amount of
computation that is performed within the triply nested
loops with loop bounds that depend on Nz, Ny and N,
where N, is a constant.

From Figure 3, it can be seen that the predicted times
matched closely with the actual execution times. The
original models were generated using small values of
problem sizes such as N, = N, = 51 and N, = N, = 61.
"The models were then used to compute the anticipated
execution time as N, and N, were varied from 1 to 200.
This is compared to actual execution times recorded for
various values of N, and N,. The errors in predictions
ranged from about 5 to 8 percent. Similarly, from Fig-
ure 4, the error in the predictions for the network of Sun
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Hyper-Sparcs was slightly higher than on the SGI and
ranged from 6 to 10 percent.

It can also be observed from the models that the per-
formance of the SGI Power Challenge is an order of mag-
nitude greater than the network of workstations. This is
because the MIPS R10000 processors in the SGI Power
Challenge machine are much faster than the Sun Hyper-
Sparcs. Runs with a single processor configuration on
each architecture showed that the MIPS R10000 pro-
cessor to be approximately 8 times faster that the Sun
Hyper-Sparc processor.

On the SGI Power Challenge, processors configura-
tions of (1,8,1), (8,1,1), (2,4,1), {4,2,1) were also mod-
eled and compared. Table 3 shows the models for the
different configurations. Figure 5 shows the models for

o 20 40 80 80 100 120 140 160 180 200
Problem Size (Nx)

Figure 3: Problem Size Models on SGI Power Challenge,
where N, = N, N; = 21 (1000 time iterations).
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Figure 4: Problem Size Models on Sun Hyper-Sparcs,
where N, = N, N, = 21 (1000 time iterations).

Configuration ko ky ka
{(1,8,1) 2.845 1§ 0.000 || 0.011
(8,1,1) -7.047 Il 1.037 || 0.013
(2,4.1) 2.918 || 0.000 || 0.012
(4,2,1) -1.200 {| 0.000 [ 0.016

Table 3: Coefficients for the model Eiime(Ne} = ko +
k1 * N, + kg * N2 on the SGI Power Challenge.

the four configurations. It can be seen that as the prob-
lem size increases, the {8,1,1) and (4,2,1) configurations
perform significantly worse than the (1,8,1) and (2,4,1)
configurations.
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Problemn Size {Nx}

Figure 5: Models for different processor configurations
on the SGI Power Challenge, where N, = N, V; = 21
{1000 time iterations).

To quantify this behavior additional models were cre-
ated. Models for the message size and the number of
messages showed that the number and size of messages
being passed were the same for both the (8,1,1) and
(1,8,1) configurations. Thus, the problem was not com-
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munication overhead. The next hypothesis was that
there was a problem in the computation phase of the pro-
gram. Because the amount of work done in both the con-
figurations should be equal, interaction with the memory
system was suspected. The number of page faults gen-
erated by each configuration was measured and is shown
in Figure 6 versus the problem size for the (1,8,1) and
(8,1,1) configurations. The figure shows that the num-
ber of page faults for the (8,1,1) configuration is much
higher. The likely cause for page fault problems is irreg-
ular accesses to memory.

Further examination of the code revealed that the
cause was a set of loops in the interprocessor communi-
cation subroutine that accessed a matrix row-wise fash-
jon. In Fortran, row-wise accesses cause non-unit strides
through memory that can increase the number of pages
touched and, as a result, the number of page faults. The
code was modified by changing the loop structure so that
one instance of the non-unit stride in the program was
removed. Figure 7 shows the performance models for the
original version of the (1,8,1) and (8,1,1) configurations
and the optimized version of the (8,1,1) configuration.
The figure shows that there was a significant improve-
ment in the performance of the modified version when
compared to the original program. Although the num-
ber of operations performed in the double-nested loops
was insignificant compared to the three-dimensional field
update loops, it had a dramatic affect on the overall
program performance. This illustrates how performance
models can be used to uncover unexpected behavior in
applications.

2000
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18%or % {81,1) Contiguration

1600+
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12001

Number ol Page Faults
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8 8
|

&

4001 *
x
X
200+ ®
]
| % v P S -
020 40 60 80 100 120 140 160 180 200

Prablem Size (Nx}

Figure 6: Number of page faults on the SGI Power Chal-
lenge for two configurations.

Models in terms of the number of processors were also
generated on both platforms. These models were created
by changing the number of processors while keeping the
problem size fixed. Table 4 shows the different P models
for N, N, = 31, N;, N, = 81, and N, N, = 151
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Figure 7: Comparison of original program to the modi-
fied version.

Size ko kl kz k3 k4
31 73.081 8.951 0.000 63.704 || 0.000
81 ~106.964 || 0.000 [| 780.309 || 44.899 | 0.000

151 2.945 0.000 || 2122.639 ;i 0.000 || 0.000

Table 4: Coefficients for the model Egime(F) = ko + k1 *
Prkyx1/P+kyxlog P+kyxPxlog P on the SGI Power
Challenge.

The different models are shown in Figure 8. From the
figure it can be seen that as the number of processors
increase the performance, in terms of execution time,
improves. As the number of processors increase there
is a decrease in the performance gain. This is expected
since as the number of processors increase the parallel
overhead also increases and this affects the performance.
From the figure it can be seen that for problem size of
N = N, = 31 and N; = 21, the execution time drops
gradually until 9 processors and as more processors are
increased the execution time increases. This is because
at this point the processors are spending more time ex-
changing information than performing the computation.
The optimum number of processors can be determined
from the models.

Figure 9 shows the models for the execution time in
terms of the number of processors on the network of Sun
Hyper-Sparcs. The models were generated for Ny = N,
= 31, N, = 21 and N, = N, = 91, N, = 21. Similar to
the models on the SGI Power Challenge, the performance
of the program improves sharply at first and then grad-
ually reduces as the number of processors are increased.
The coefficients for the models are shown in Table 5.

Performance models for the FDTD application in
terms of both the problem size and the number of proces-
sors were also generated. The model for the execution
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{1000 time iterations).

Size ko kl kg kg k4
3 101.144 || 0.000 || 503.707 | 0.600 || 0.000
61 195.574 || 0.000 || 1478.746 || 0.000 || 0.000
91 314.110 || 0.798 | 4268.800 | 0.000 | 0.000

Table 5: Coefficients for the model Eyme(P) = ko + k1 *
P+ kox1/P+ ks *log P+ kg * P xlog P on the Network
of Sun Hyper-Sparcs.
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Figure 9: Processor Models on the Network of Sun
Hyper-Spares (1000 time iterations).
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time in terms of the number of processors P and the
problem size N is:
Fiime = 5.538 —0.227x N, +1.366+ P

~1.639 % (N,/P) +0.119 % (N2/P)

The average error in prediciion for this model was about
10 percent. Figure 10 shows model for the program as
both a function of problem size and number of proces-
SOrS.
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Figure 10: The Problem Size and Processor Model on
the SGI Power Challenge, where N, = N, N, = 21
{1000 time iterations).

6 SUMMARY

An approach to modeling the performance of parallel
programs was presented and applied to meodeling the
FDTD algorithm. The modeling technique is based on
analyzing the structure of an existing program and mea-
suring the performance of the program during actual
runs on the target architecture as key factors of the ap-
plication and architecture are varied. This information
is used to create a closed-form expression for the execu-
tion time of the program in terms of those factors. The
expression can then be used to predict the performance
of the application over a wide range of problem size and
number of processors.

The models showed that the FDTD application per-
formed well when there was a sufficiently large prob-
lem size resulting in sufficient parallelism. The models
showed that the execution time varied as a square of the
problem size. This is due to the fact that the majority
of the work was done within a triply nested loop, with
the outer loop dimension {NV,) held constant. The mod-
els also showed a degradation in the performance in one
of the configurations as the problem size increased. The
reason for this was found to be non-unit stride accesses
to memory. This was corrected by interchanging the



rows and columns. This change resulted in a 30 percent
performance improvement for N; = 131.
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