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Abstract— In this paper a method to calculate the
gradients for the TEAM 22 problem is presented. Fur-
thermore an objective function different from the one
proposed in the benchmark is used where the energy
requirement was handled as an equality constraint.
The so derived gradients of the objective function and
the constraints together with a standard optimization
routine are used to solve the problem. In the last sec-
tion some new results concerning the presence of local
minima for the problem are given.

I. INTRODUCTION

We consider the problem of finding an optimal config-
uration for a superconducting magnetic energy storage
(SMES) device. The SMES device consists of an arrange-
ment of superconducting coils which are driven by cur-
rents to store electrical energy. Due to the large current
densities, one single coil produces a large magnetic stray
field. A configuration of two coils with currents flowing
in opposite directions diminishes the stray field consider-
ably. The situation we consider is defined in [1] as team
workshop problem 22. Two concentric solenoids should
be designed in such a way that the following objectives
are satisfied:

o The energy stored in the device should be 180M J.

o The mean stray field at 21 measurement points along
the lines a and b at a distance of 10 meters should
be as small as possible (Fig. 1).

o The generated magnetic fleld inside the solenoids
must not violate a certain physical condition
which guarantees superconductivity (quench condi-
tion)(Fig. 2).

The parameters that should be adjusted are the geo-
metric quantities defining the dimensions of the coils and
the two current densities(Fig. 1):

e R; ... mean radius of the inner coil
e R, ... mean radius of the outer coil
¢ hy ... half the height of the inner coil
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o ho ...
o dy ...
e dy ...
o Ji ..
o Jy

half the height of the outer coil
thickness of the inner coil
thickness of the outer coil
current density in the inner coil

current density in the outer coil
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Fig. 1. Configuration of the SMES device
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Fig. 2. Critical curve of the superconductor.

In Fig. 2 the quenching curve is plotted as a solid curve
in the B-J plane. In order to maintain superconductivity,
in each point of both coils the current density J and the
magnetic field B must satisfy that the corresponding point
in the B-J plane lies below the critical quenching curve.
We use the linear approximation (dashed line in Fig. 2)

(7] < ~6.4|B| + 54 MA/m? (1)



as quench condition which must not be violated at any
point of the ceils. It 1s sufficient to check the validity of
the quenching condition in the three points P, @ and R
(Fig. 1), where the magnetic field can attain its maximum.

II. FIELD AND ENERGY CALCULATION

In order to decide whether or not a certain configura-
tion is admissible and how well the objectives are satisfied,
it is necessary to calculate energy, stray field and the field
in the critical points P, @ and R in terms of the param-
eters. Because of the linearity of the problem we used
Biot-Savarts law. We define the following abbreviations
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for the component in direction of the radius of the mag-
netic flux density, where r and z refer to the point in
which the field should be calculated, and
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for the component in z-direction. The energy can be cal-
culated using the magnetic vector potential, which leads
to
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III. MATHEMATICAL PROGRAMMING
PROBLEM

For the optimization of the problem a sequential
quadratic programming (SQP) method was applied that
uses a BFGS update for the Hessian [4]. This method
needs the gradient of the objective function in a point to
determine a search direction. Due to the relative great
number of optimization parameters the calculation of the
gradient by using a finite difference approximation would
take too much time. Fortunately a analytical representa-
tion of the gradient can be obtained directly by differenti-
ating (5) - (7). We choose a formulation as a constrained
optimization problem in favor of just adding a penalty
term to the objective function (as it is stated in the de-
scription of the benchmark {1]) which would force the en-
ergy to be close to 180M J, because it turned out that the
energy and the stray field respond in a completely differ-
ent way to changes of the parameter configuration. While
we have good sensitivity for the energy term, the stray
field is quite insensitive. Therefore we would have very
unequal partners in the objective function and a gradient-
based method would always tend to adjust the energy to
the desired value and neglect the stray field term. The
optimization problem can therefore be stated as follows:

Definition 1 minimize f(p

Z !B.Stray
subject to the constratnis:

o W(p)— 180MJ =0

J1 + 6.4|Bmax({P)| - 54 < 0
—J2 + 6.4 Bmax(Q)| — 54 < 0
J1+ 6.4|Bmax(R)| - 54 < 0

(Ri+%4)-(Re-%)<0



where p 1s the vector of oplimization parameters.
B,,qy is measured in the i*h measurement points at
the lines a and b (Fig. 1) and Bmax is calculated in
the points P, and R.

The quench condition is split in three inequality con-
straints (one for each point) because the derivative of the
constraints has to be an analytical function, which would
not be the case, if the quench condition is packed into one
constraint referring to the maximum flux density occur-
ring in one of the three points. The last constraint simply
ensures that the two solenoids do not intersect each other.
Due to the equality constraint for the energy the opti-
mization routine searches for the minimal stray field in a
seven dimensional sub-manifold in the eight dimensional
parameter space, where the energy is about 180MJ.

IV. GRADIENT INFORMATION

In order to get the gradient of the objective function
and the constraints it is necessary to calculate the deriva-
tives of (5)-(7) with respect to the design parameters p;.
This, however, is easily done in case of the parameters
which occur in the bounds of the integrals, because dif-
ferentiating with respect to these variables means only
to cancel the integral and evaluate the integrand at the
respective bound. Thus, for the terms occurring in the
components of the magnetic flux density, which are nec-
essary for the stray field calculation, the derivative with
respect to a design parameter p is given by an expression
of the following kind
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where the upper and lower bounds for the v-integration
are functions u,(p) and l,(p) respectively of the design
parameter p. The integration variables v and w have been
introduced because of generality since v can play the role
of either p or . In some terms for the energy calculation
a specific design parameter occurs in two integrals {in the
- and the p-integration or in the z-and the (-integration),
therefore we obtain

Uy (P) tu(p)
- /K(v,w)dwdv =
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- / K (uy (p), w)de ~
Ly (p)

52

K(v,1y(p))dv. (9)

Since the kernel in (4) is symmetric with respect to the
integration in r- and p- direction (and also symmetric in
z and (), the first and third and the second and fourth
term in {9) coincide.

The calculation of the derivative of the magnetic flux
density in the points P, ¢} and R is much more delicate. In
this case, the design parameters occur in the bounds of the
integral and, as coordinates of the fieldpoint, also in the
kernel. Moreover, since the fieldpoint lies at the boundary
of one of the coils, the integrals in (5) and (6) are weakly
singular and we have to differentiate with respect to the
coordinates of the singularity. We were not able to derive
the correct analytic expression for these derivatives (there
seems to be some tricky kind of jump condition involved),
thus we used a finite difference approximation for these
components of the gradient. Note however that, for the
calculation of Byax, the coordinates (r, 0) of the fieldpoint
do not depend on the heights h;, hence if we differentiate
with respect to h;, (8) is valid.

The integrals are evaluated using a Gauss-Kronrod
quadrature [2] with 7-63 points, where, for the energy, the
vector potential was calculated at hundred points in each
coil. For the derivation of the constraints concerning the
quench condition symmetry was exploited and the neces-
sary integrals over the source points had only to be per-
formed in one halfplane, which was not possible in case of
the energy and stray field gradient, where the field points
are in general not located in the plane of symmetry.

V. OPTIMIZATION RESULTS

As SQP routine we used the eQ4ucf program from the
NAG library, which was launched from several starting
points among them is the best point found with a genetic
algorithm [3].

In Table I the result of the optimization run launched
from one of the two proposed starting points in the bench-
mark is given. This point leads to an energy of 180MJ
and a stray field of 37.535 4T and is indeed a local min-
imum because the Kuhn-Tucker condition [4] is satis-
fied. Tt has to be remarked that first the optimization
routine terminated in the point R,=2.062, R>=2.72189,
h1=0.595, hy=1.632, d;=0.638, d2=0.107, J;=15.15 and
Jo=-18.988 without satisfying the Kuhn-Tucker condition
and was then restarted from this point with slightly mod-
ified components, namely R;=2.06, R;=2.718, h;=0.596,



TABLE 1
Starting Point 1

Starty End,
Ri[m] 2.094 2.059
Ra[m] 3.422 2.719
k1 [m] 1.027 0.596
hom] 1.302 1.632
d1[m] 0.571 0.638
dz [m] 0.254 0.108
Ji[A/mm?] 14.14 15.15
Ja[A/mm?) -19.04 -18.99
Energy[MJ] 594.75 180.00
Bsiray [0T} 252828 37.55

TABLE 11
Starting Point 2

Staris  Ends
R [m] 1.577 1.816
Rgm] 2.131 2.204
hy{m] 0.466  0.606
hiz[m] 1.367 1.384
dy {m] 0.732 0.772
dz[m] 0.138  0.216
J1{A/mm?] 16.18 15.96
J2[A/mm?] -13.51  -13.65
Energy[MJ} 114.85 180.00
Bsiray [£T]  1727.5 14238

hy=1.631, d1=0.6378, d2=0.1, J;=15.16 and J.=-18.889.
For the entire optimization process 57 iterations with
about 190 function evaluations where needed.

TABLE II1
Starting Point 3
Starts Ends
Ri[m] 1.3015  1.3012
Rz[m] 1.8000  1.8007
hj [m] 1.1322  1.1325
hz[m)] 1.5421  1.5422
dy[m] 0.5793  0.5802
da[m] 0.1959  0.1961
J.[A/mm?] 16.416  16.422
I2[A/mm?] -18.925 -18.925
Energy[MJ} 17999  180.00
Bgtrey [#T]  9.308 8.928

In (Fig. 3) the increasing values for the stray field in
some points are remarkable, the reascn for this is that also
the function evaluations during a line search are plotted.
Furthermore it can be seen that the energy approaches the
required value within very few iterations due to the fact
that the optimization process tries to get into a feasible
region as soon as possible.

The point Fnd; in Table II was reached within 31 iter-
ations needing 78 function evaluations and leads also to
an energy of exactly 180M J but a far better stray field of
14.24 4T. In this point also the Kuhn-Tucker condition
1s fulfilled, but this minimum is located at the border of
a region where the quench-effect occurs {Bpmax="5.943765
T in point P (Fig. 1}).

The point Starts in Table III is the best point up to
now that has been found with a genetic algorithm. This
point has a stray field of 9.3 4 T. During 4 iterations with
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the SQP method and the analytical gradient the 'Kuhn-
Tucker point’ End; was found, which has an energy of
exactly 180M J and a stray field of 8.928 p T, and which
is very likely to be the global optimum of the problem.
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Fig. 3. Stray Field and Energy during Optimization

VI. CONCLUSIONS

In this paper we proposed a method of calculating the
gradients necessary to optimize the problem with a SQP
method under nonlinear constraints in an analytical way
by directly differentiating the terms obtained from the
Biot-Savarts law directly. This method leads to a remark-
able speedup compared to a finite difference approxima-
tion of the gradients.

Furthermore the existence of local minima has been
proved and a point that might be the global optimum
was found.
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