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Abstract-Optimization in electrical engineering has attracted
an increasing attention over the last few years. Various
strategies to solve electromagnetic optimization problems have
been introduced, amongst them stochastic, deterministic and
hybrid ones. Most of today’s real world applications, however,
involve multiple conflicting objectives which should be
considered simultaneously. The aim of this paper is to introduce
self adaptive fuzzy sets to treat vector optimization problems.

I. INTRODUCTION

Stochastic methods like Evolution Strategies, Genetic
Algorithms or Simulated Annealing and first and second
order deterministic methods have successfully been applied
to the optimization of electromagnetic devices. Today rather
complicated arrangements are chosen to be optimized, while
in the beginming of optimization in electrical engineering
mainly simple problems like the shape of a shimming device
which should produce a homogeneous field were investigated
[1]. Characteristic of these so called vector optimization
problems (VOP) is the appearance of a conflict between the
individual solutions for each single part of the objective
function. Generally no solution exists where all the different
objectives can reach their individual minimum. The geal of
the optimization process is then to find the optimal
compromise, A common way to treat such kind of problems
is the transformation of the VOP to a scalar optimization
problem (SOP) by means of weighted sums of the different
objectives. A more promising way, however, seems to be the
introduction of a fuzzy modeling of the objective function.
Both methods will be compared using the TEAM workshop
problem 22 [2,3] with respect to the convergence stability
and convergence speed.

1i. SMES CONFIGURATION

SMES systems are devices which store significant
amounts of energy in magnetic fields in a fairly simple and
economical way. A double solenoidal coil configuration,
which has a smaller magnetic stray field than a single
solenoid if both coils are powered with currents in opposite
directions, was chosen.

This arrangement is an excellent example for
multiobjective optimization problems. Two demands were
implemented: the magnetic stray field should be minimized
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without reducing the stored energy value which was required
to be 180MIJ. The optimization process was carried out
varying the design parameters shown in Fig.1.
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Fig.1. SMES arrangernent

The box constraints of the eight degrees of freedom are
given in Table 1.

TABLE [ - LIMITS OF THE OPTIMIZATION PARAMETERS FOR
THE ACTIVE SHIELDING SMES

R Ry b hy 4y 1 2

fm)  [m] [m} [m  {m] M pMam?] MAM?]
min. 1.0 1.8 0.2 0.2 0.1 0.1 10.0 -30.0
max. 4.00 5.0 3.6 36 0.8 0.8 30.0 -10.0

Beside these box constraints there exist some physical
constraints for the design parameters too. Firstly the
solenoids should not overlap each other and secondly the
superconducting material should not violate the ,quench®
condition that sets up a relation between the current density
and the maximum value of the magnetic induction {B| within
the coils as shown in Fig. 2.
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Fig. 2. Properties of the Superconductor



The critical curve was approximated by a straight line:

9] =(-64/B[+540). [MA/m’] (1
Configurations violating the above conditions were
treated by adding a penalty term to the objective function.

II1. GENETIC ALGORITHM

In nature, evolution can be taken as an example for a very
efficient adaptation process of living organisms to their
environment. Thus it is very promising to use nature
analogous problem solving strategies to achieve an optimal
adaptation of the given system [4]). The Genetic Algorithm
(Fig. 3), as a result of that, is 2 machine-based optimization
routine which connects evolutionary learning to genetic laws.

To incorporate problem specific knowledge [5] the
chromosome representation chosen is natural and therefore
the parameters were set up as a vector of eight floating-point
numbers.
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Fig. 3 Flow chart of the Genetic Algorithm

The initialization procedure creates at random a
population of solutions. At first, an individual is produced
randomly, and its feasibility is checked with respect to the
constraints. If it is not feasible, the algorithm adds a penalty
term to its fitness value. The process is repeated until the
number of the individuals in the population equals the
specified population size of 21.

The selection is a process to choose some individuals of
high fitness for ,breeding”. In this paper, the commonly used
roulette wheel selection is applied.

The operators used for genotypic represented
chromosomes are quite different from the classical ones.
However, because of the intuitive sirnilarities, we will divide
them into the standard classes, mutation and crossover.

Arithmetical crossover is defined as a linear combination

of two vectors. If .S': and S:, are to be crossed, the resulting
offsprings are

This operator uses a parameter ¢ which is selected at
random out of an mterval from 0.8to 1.4 .

The mutation tries to produce an offspring in the most
promising direction. A mutation direction is given by the
difference vector between the best and the second best
individual. A vector with normaly distributed eclements
randomly selected around this difference vector is added to

s =as! +(1-a)s,

£+l (2)
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 the parent vector under investigation.
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The genetic operators are iteratively
corresponding to their probabilities, as follows:

applied

1. Crossover is performed with a probability of 53%.
2. Mutation is carried out with a probability of 7%.
3. The rest of the individuals are reproduced.

The algorithm stops if no improvement is obtained in the
course of 500 iterations.

IV. DEFINITION OF THE OBJECTIVE FUNCTION
A. Weighted sum of the individual objectives
A common possibility to define the objective function OF

of a multi objective optimization problem is the use of a
weighted sum of the individual objectives.
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where E, =180 MJ, B, =200 uT and B, is defined as:
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The value B,,, has to be introduced to keep the two terms
of the sum at the same order of magnitude. Although this
approach can yield the optimal solution with a reasonable
computational effort, it needs an initial tuning phase to
determine well suited weights. The convergence stability and
the convergence speed are very sensitive to the choice of
these weighting factors. Seftting the normalization parameter
B,,..to 1mT, which is 5 times the 200 uT only, leads to a
non converging situation, as shown in Figures 4 and 5 for the
evolution of the strayfield and the energy in the due course of



the optimization process. It can be seen very well, that the
resulting energy does not meet the required 180MJ in the
least, while the strayfield reaches very low level. The bad
choice of the weights degenerates the multi objective
optimization problem to a single objective optimization
problem in terms of the stray field.
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Fig. 5. Energy versus function calls; weighted sum
B. Static fuzzy definition of the objective function

Another more promising and intuitive attempt is the
introduction of a fuzzy definition of the objectives [6].
Requirements like ,best fit“ (,,.Energy should be sufficiently
near to 180MJ“) or ,minimal“ and ,maximal® objectives
{,.Stray field should be as small as possible”) can easily be
modeled by bell shaped convex fuzzy sets as indicated in
Fig. 6 and 7 [7]. For bell shaped convex fuzzy sets two
functions are defined (one for each side) which are given by:

L(e™™™) when x<m
R(e™™ ™) when x>m

u,(x)= { (5

The designer defines the 90% acceptance parameters X no0,
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and X000, and can calculate the constants / and r by:

1 =1(0.9)/ ~x2 500, } ©

r = I0(09)/ —x 50

One important feature of describing the objectives in such
a way is the implicit normalization of the values of the
individual objectives.
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Fig. 7. Fuzzy modeling of the stray field objective

The two fuzzy sets are combined by means of 2 product
rule to arrive at a scalar optimization problem.

Even if the acceptance parameters were changed by a
factor of 100, the optimization procedure still converged to
the global minimum of the problem, revealing a slightly
worse convergence speed. Fig. § and 9 show the progress of
both the strayfield and the energy in the respective cases.
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C. Self adaptive fuzzy definition of the objective function

Although the convergence speed and stability of the
applied optimization algorithm proved to be very insensitive
to the choice of the acceptance parameters, an additional step
towards something like a ,plug and play* optimization
algorithm was done by introducing ,self adaptive
membership functions which adapt themselves to the local
properties of the optimization path in the multidimensional
parameter space.

From the first few function calls (e.g. the first generation
of .the genetic algorithm) initial acceptance parameters arc
evaluated. Then an adaptation algorithm was implemented to
either widen or shrink the membership functions in the due
course of the optimization process (Fig. 10).
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Fig.10. Flow chart of the adaptation of the fuzzy sets

The number of improvements of both the energy and the
strayfield and the mean value of the product of the

29

acceptance parameters FP are monitored during a certain
number of function calls (e.g. one generation of the genetic
algorithm). Then an adaptation step follows. If the mean
value of the product of the acceptance parameters is smaller
than the current product, the parameters are reduced by
dividing them by a factor of 1.5 (,,shrinking phase*). If the
individual success rates (SR) of the objectives are smaller
than a specified value {Level), which was chosen to be 0.56,
the acceptance parameters are increased by multiplying them
by the above factor.

Fig. 11 and 12 show the progress of the strayfield and the
energy when applying the self adaptive fuzzy sets.
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Fig. 11. Stray field versus function calls; self adaptive fuzzy sets
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Fig. 12. Energy versus function calls; self adaptive fuzzy sets

Fig. 13 shows the values of the acceptance parameter
(90% value) of the energy in the due course of the
optimization process. As it can be seen in Fig. 13, this
parameter reaches very high values after some 3000 function
calls. Looking at that specific optimization run in more detail,
it can be recognized that at this stage of the procedure the
strategy ran the risk of being trapped in a local minimum.
Therefore the enlarging of the acceptance parameters appears



to be something like a ,destabilization phase or ,disaster
just in time to overcome the local minimum. But it should be
noted here that the ,environment” (e.g. the objective
function) is changed and that the optimization strategy itself
remains unchanged.

RESULTS

The different methods to define the objective function
were applied to the TEAM workshop problem 22. At least
ten runs where done with the weighted sum and the static and
self adaptive fuzzy sets, respectively. Table. II summarizes
the mean number of function calls used by the different
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As a stopping criterion of each run the bstray value
should be less than 20 uT and the energy value should not
differ more than 0.01MJ from the required 180 MIJ.

Table. Il summarizes the parameter values of the
global optimum and the resulting solution of both
objectives.

Fig. 14 shows a screen shot of the FEM software user
interface available at the Institute for Fundamentals and
Theory of Electrical Engineering at the Technical
University of Graz. The upper left part presents the final
geometry of the SMES configuration, the upper right part
shows a plot of the absolute magnetic induction B, while
the absolute value of the magnetic induction B versus the
two lines a and b (Fig. 1) are plotted in the two lower
pictures.

V1. CONCLUSION

A well chosen definition of the objective function is
crucial to the convergence speed and stability of stochastic
strategies used for multi objective optimization problems.
The application of a weighted sum, which is commonty
used, frequently needs a very cumbersome initial tuning
phase to define useful weights.

Requirements like best fit objectives and minimal
objectives can easily be modeled, implicitly normalized
and merged by means of static fuzzy sets and suitable
inference rules. The convergence stability and
convergence speed are very insensitive to the actual choice
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of the fuzzy sets, defined by their respective
acceptance parameters.

Using self adaptive fuzzy sets, which are
comparable to the static ones with respect to the
computational effort, new optimization problems can be
handled without a priori knowledge of the specific
problem, which could be termed as a ,plug and play”
optimization algorithm.

VII. REFERENCES

[11 C.A. Magele, K. Preis, W. Renhart, R. Dyczij-Edlinger and K. R.
Richter, "Higher order evolution strategies for the global
optimization of electromagnetic devices”, JEEE Trans. Magn.,
Vol. 29, No. 2, Mar. 1993, pp 1775-1778

{21 P.Alotto, A.V. Kuntsevitch, Ch. Magele, G. Melinari, C. Paul, K.

Preis, M. Repetto, K.R. Richter, "Multiobjective Optimization in

Magnetostatics: A Proposal for Benchmark Problems”, IEEE Trans.
on Magn,Vol.32,pp1238-1241, 1996

[3] Ch. Magele et. all, "SMES Optimization Benchmark", Proceedings of
the TEAM Workshop in the Sixth Round, March 20-21,1996

QOkayama, Japan

[4] F.G. Ubler, 0.A. Mohammed, C.S. Koh, "Utilizing Genetic
Algorithms for the Optimal Design of .. ", IEEE Irans. on
Magn,Vol.30, no. 6, pp 4296-4298, 1594

[51 Z. Michaliewicz: "Genetic Algorithms + Datz Structures =
Evolution Programs", Springer Verlag Berlin Heidelberg.

[6] M.Chiampi, C. Ragusa, M. Repetto,
Multiobjective Optimization in Magentics”, LEEE Trans. on
Magn,Vol.32, no. 3, pp 1234-1237, 1996

[7] R.E. Bellman, HL. Zadeh, "Decision making in a fuzzy
environment”, Management Science, Vol. 17, Pg. 141-164, 1970.

"Fuzzy Approach for



