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Abstract─ Studies on whispering gallery mode 
(WGM) laser in microrings have been limited to 
circular geometry. Elliptical microring lasers, 
despite their potential engineering use, have not 
been analyzed to guide experiments. This paper 
introduces a computationally efficient method for 
determining the WGM laser resonance and the 
laser field distribution in an elliptical microring. 
An analytical method is applied to avoid 
computing high order Mathieu functions. Both 
WGM resonant frequencies and electromagnetic 
(EM) field distributions are computed and 
presented in this paper. Computed results clearly 
show that the WGM laser field is concentrated on 
the outer surface of the microring. Results also 
show that the eccentricity of the ellipse affects the 
distribution of resonant frequencies and the laser 
field.  
  
Index Terms─ Whispering gallery mode, 
microring laser, elliptical microring, Mathieu 
functions. 
 

I. INTRODUCTION 
The demonstration of lasers in luminescent 

conducting polymer thin films [1, 2] has triggered 
scientists to study lasers achieved with cylindrical 
microcavities formed with this type of polymer [3- 
6]. It is reported that a cylindrical microlaser based 
on whispering gallery mode (WGM) shows the 

advantages of supporting low-power operation and 
hence yields a high-Q value [3, 4]. The 
phenomenon of the whispering gallery was first 
observed and studied by Lord Rayleigh [7], and 
the electromagnetic (EM) WGM in a dielectric 
waveguide was comprehensively analyzed by 
Wait [8]. Considering the advantage of the low 
threshold lasing characteristics of microrings as 
well as the flexibility of forming the conjugate 
polymer into various geometry [2], there is a 
potential engineering use of microring lasers as 
integrated signal sources for communications. 
Experimental measurements on the lasing 
spectrum of polymer cylindrical microlasers have 
been reported [4], and simplified studies for 
resonant modes were presented by several 
researchers [5, 6]. Baktur et. al. provided a more 
comprehensive theoretical description for WGM 
laser resonances in a circular microring [9].  

While microring geometry has been confined to 
a circular cross-section so far, it is equally 
important to study the WGM laser in an elliptical 
microring because such a structure provides a 
controllable coupling when used as a pump source. 
It is the objective of this work to develop a 
computationally efficient method for determining 
the resonance and fields of a WGM laser in a 
microring with an elliptical cross-section. The 
paper is organized as follows. Section II describes 
the problem solving method and basic formula in 
an elliptical geometry. Computation, results, and 
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discussions of WGM resonance and fields are 
presented in sections III and IV. Limiting factors 
of the method are concluded in section V. 
 

II. CONFIGURATION OF THE LASER  
The configuration of the elliptical microring is 

as follows. A microring made from an optically 
active polymer is built on an aluminum or gold 
core. Both core and ring are of elliptical cross-
section (see Fig. 1). The choice of the core 
material is consistent with the experimental studies 
[3, 4]. Although waveguide modes exist and can 
resonate in a microring, to be consistent with 
experiments [3, 4], we only discuss modes that are 
detached from the inner boundary of the 
microring, i.e. WGMs. The microring is modeled 
to have an infinite length (i.e. infinite in z. It 
should be noted that Fig. 1 is on xy plane, and z is 
vertical to the cross section in xy plane.) because 
the optical length of the microring is in the order 
of 100 wavelengths and allows us to model the 
length as infinite for the simplicity of the analysis. 
The microring can, of course, support propagation 
in the z direction, bounded by reflections on the 
annular faces. However, such a mode structure 
involves radiative loss at these interfaces, and the 
losses would quench lasing. 

The cross-section view of the microring is 
shown in Fig. 1. Major and minor axes of the inner 
boundary of the microring are denoted as a, b. For 
the outer boundary, the two axes are a' and b'. The 
thickness of the microring is d, and it is obvious to 
see that the following relations hold,  

' ,
'

a a d
b b d

= +
= + .                                  (1) 

 

 
Fig. 1. Cross-section view of the elliptical 
microring. 

In elliptical coordinates, the two-dimensional 
wave equation can be separated into two 
Mathieu’s equations [11, 12], and solutions of 
these two equations are combinations of Mathieu’s 
functions [13]. Since WGMs are high order modes 
[7, 8], it suggests that in order to study the WGM 
in an elliptical microring, we need to deal with 
modes involving Mathieu functions of large 
orders. Although it is possible to study the WGM 
resonance in an elliptical cavity by evaluating 
Mathieu functions [14], the mode numbers that 
can be correctly computed are rather limited. 
Summations for Mathieu functions of large orders 
are difficult due to their poor convergence. 
Additionally, the process of deriving formula for 
EM field components is very tedious and time 
consuming. Therefore, we try to provide a much 
simpler formulation with a smaller computational 
complexity. 

Before computing the WGM resonance and 
electromagnetic fields, it is helpful to work out 
relations between variables used in the elliptical 
coordinate system. In Fig. 1, a point p on the outer 
ellipse can be located by any one pair of variables 
from (x, y), (l, φ) or (ξ2, η). The relations between 
these three sets of variables are as follows: 

cos ,

sin ,

x l

y l

φ

φ

=

=
                                 (2) 

' cos ,

' sin ,

x a

y b

η

η

=

=
                              (3) 

2 2

2 2

2 2

,

'cos ,
' '

l x y

a l b
l a b

φ

= +

−
= ±

−
'           (4) 

cos cos ,
'

sin sin ,
'

l
a
l
b

η φ

η φ

=

=
                       (5) 

and  

2
't anh .
'

b
a

ξ =                               (6) 

The method proposed to study the WGM laser 
in an elliptical microring is to deduce the WGM 
field from the propagation in a local osculating 
circle [15]. This method has been validated with 
experiments for WGM in an elliptical microdisk 
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[15]. At a point in the microring, the laser field is 
approximated by the field in the circle of curvature 
at that point. 

To begin the discussion, the outer ellipse (axes: 
a’, b’) is fit locally with circles of curvature as 
illustrated in Fig. 2. For example, at the point P on 
the ellipse (axes: a’, b’), the circle of curvature is 
C1. C1 is an osculating circle at P, and it has the 
same radius as the radius of curvature at the point 
P. The radius of curvature at a point (ξ2, η), 
represented by R(η), can be computed from the 
following formula [16]: 

3
2 2 2 2 2( ' sin ' cos )( ) .

' '
a bR

a b
η ηη +

=          (7) 

The WGM field at P1 in the ellipse is viewed as 
having the same property as the WGM field at P1 
in the circle C1. Therefore, computing the field at 
P1 in C1 approximates the field in the ellipse at P1. 
Similarly, fields at P2 and P3 can be obtained by 
computing fields in the circle C2 and C3 at these 
points. When circles of curvature are fit into the 
ellipse at every point, the field at any point inside 
the ellipse (i.g. P1 and P3 Fig. 2) and outside the 
ellipse (i.g. P2 in Fig. 2) can be accordingly 
computed. 

 

 
Fig. 2. Ellipse with its osculating circles at three 
points. 

 
III. WHISPERING GALLERY MODE 

RESONANCE  
A. Analysis 

When computing the resonance, the EM fields 
are separated into transverse electric (TE) and 
transverse magnetic (TM) modes to z axis, which 
is along the length of the microring. The two types 

of modes are then treated individually. In the local 
circle (i.e. the circle of curvature), the 
circumferential propagation is contained in e-jνφ, 
where ν is the angular wave number [9], and φ is 
the angular distance on the local circle. It is 
desirable to rewrite e-jνφ into e-jν(η)φ (η) to show local 
propagation.  When a WGM propagates along 
the ellipse, for a whole period, the increase in 
phase along the path of the angular propagation 

is
η π

η

ν η φ η η
=

=
∫
2

0

( ) ( ) .d  In order to achieve a WGM 

resonance the phase increase needs to be an 
integer multiple of 2π when the EM wave finishes 
an entire period along the ellipse. Accordingly we 
have equation (8), where m is an integer and ν(η), 
which is closely related to the radius of the 
curvature [9], is the order of the Bessel functions 
that describe the WGM in the local microring at η. 

η π

η

ν η φ η η π
2

0

( ) ( ) 2 .d m
=

=

=∫                   (8) 

In equation (8), φ (η) is the angular distance 
along the local circle at η and the corresponding 
length on the local circle is 

η η φ η=( ) ( ) ( ) .l R                    (9) 

It should be noted that at the vicinity of (ξ, η), 
l(η) can be approximated by the arc-length of the 
ellipse along dη and it yields 

η η η2 2 2 2( ) ' sin ' cos .l a b d= + η      (10) 

Using (7), (9) and (10), (8) can be re-written 
into 

 
π

ν η η π
η η

2

2 2 2 2
0

' ' ( ) 2 .
' sin ' cos

a b d m
a b

=
+∫       (11) 

When the ellipse takes the limit to a circle, (11) 
gives ν=m. This result is the same as discussed in 
[9] for a circular microring resonance. By using a 
zero finding routine, ν(η) can be computed from 
the characteristic equation of the local microring.  

 
B. Computed Results 

Resonant frequencies (wavelengths) for both 
TM and TE WGM modes in elliptical microrings 
are computed and the results are plotted in Fig. 3. 
The elliptical microrings have the same perimeters 
and have varied axial ratios. In computation, the 
integration in equation (11) is divided into 80 sub-
intervals, and the Gaussian quadrature with the 
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order of 32 is used over sub-intervals. From Fig. 3, 
it is seen that the axial ratio of the ellipse affects 
the resonance by shifting the resonant 
wavelengths. But the shifting is not significant 
when the laser resonance (630 nm) is considered. 
Also, the spacing between the wavelengths does 
not change significantly according to the shape of 
the ellipse as long as the perimeter of the ellipse 

Fig. 3. WGM re

stays the same.  

sonance in an elliptical microring 
with respect to the axial ratio. 

 
C. Discussion 

It is useful to have a simplified formula to 
approximately determine the resonant wavelengths 
to guide experiments. Suppose at λ0 there is a 
WGM resonance, then equation (8) holds for λ0, 
and it means the equation (12) shown below is 
true. The refractive index of the microring is nr. 

2
02 n abππ λ

2 2 2 2
0 0

( ) 2 .
2 sin cos

r

r

d m
n a b

ν η η π
λ π η η

=
+∫

                     (12) 

If we let 
2

0
2 2 2 2

0

( )
2 sin cosr

abL

Since ν(η) is related to R(η) [8], ν(η) can be 
rewritten as 

πν η α η
λ

=
0

2( ) ( ) ( ),rn R η                (13) 

where α(η) is a coefficient. So L becomes 
2

2 2 2 2
0

2
2 2 2 2

0

( ) ( )
sin cos

( ) sin cos .

abL R
a b

a b d

π

π

dα η η
η η

α η η η η

=
+

= +

∫

∫

η

.

     (14) 

635 640 645630625
Wavelength (nm)

a=20 µm, b=10 µm
(a)

635 640 645630625
Wavelength (nm)

a=17 µm, b=13.754 µm
(b)

635 640 645630625
Wavelength (nm)

a=b=15.42 µm
(c)

TM TE

TM TE

TM TE

Therefore, from (12), we have 
λ =0( / )rL n m                           (15) 

Suppose that a new resonance occurs at λ0+ Δλ 
and results in an integer m-1 for (15). L varies 
slowly compared to Δλ, and one can assume that L 
does not change with respect to the wavelength. 
Therefore, we have 

λ λ
≈ −

+ Δ0

1.rn
L m                   (16) 

From (16), Δλ can be computed as the 
following 

π

λ
λ

α η η η
Δ ≈

+∫

2
0

2
2 2 2 2

0

.
( ) sin cosrn a b dη

    (17) 

If we further assume α(η) ≈1, then Δλ can be 
approximately computed from 

2
0

2
2 2 2 2

.
sin cosrn a b d

π
λλ

d
n a b

π λ ν η η
π η η

=
+∫ ,  

0

    (18) 

η η η
Δ ≈

+∫
Equation (18) is easy to compute and it gives a 

simple approximate check for experimental data, 
but it is an approximation because α approaches 1 
only when the structure is electrically large. For 
example, it is found that α increased from 0.94 to 
0.97 as the radius of curvature increased from 10.0 
to 23.0 μm for the free space wavelength of 632.00 
nm. 
 

IV. COMPUTATION OF THE WGM 
FIELD  

A. Analysis 
When an excitation is placed near P0 in the 

osculating circle C0 (Fig. 4), the WGM field at P0 
can be determined from the radius of C0 and ν0, 
which is the order of the WGM. The EM field at 
P1, which is located next to P0, is on the osculating 
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circle C1. When P0 and P1 are in the vicinity of 
each other, both of them can be approximately 
viewed as in the circle C1, and accordingly satisfy 
the following: 

1
1 0( ) ( ) .jF P F P e ν φΔ=                    (19) 

The exponent in (19) can be re-written to have 
1

1 1
1 1

.1j j R j l
R R
ν νν φ φΔ = Δ = Δ        (20) 

The arc-length can be computed from 
 

η η η2 2 2 2
1 1sin cosl a bΔ = + Δ ,     (21) 

where Δη is the angular variation from P0 to P1 
along the ellipse e, η1 is the angular coordinate of 
P1 on the ellipse e and the relation between η and φ 
is given by equation (5) . 

By using (21), (20) becomes 
1

1 2 2 2 2
1 1sin cos
abj j

a b
νν φ η

η η
Δ = Δ

+
.    (22) 

Let 1
1 2 2 2 2

1 1sin cos
ab

a b
νΓ

η η
=

+
, and the equation 

(19) becomes 
1

1 0( ) ( ) .jF P F P e Γ ηΔ=                 (23) 

Similarly, fields at P2 and P3 can be computed 
from  

Γ η Γ η

Γ Γ η

2 1

1 2

2 1 0
( )

0

(P ) ( ) ( )
( ) ,

j j

j

F F P e F P e e
F P e

Δ Δ

+ Δ

= =

=

Γ η2j Δ

               

(24) 
and 

1 2 3( )
3 0( ) ( ) .jF P F P e Γ Γ Γ η+ + Δ=            (25) 

Iterating this process gives the field at PN to be 

η Γ η0
1

( ) ( ) exp( ) .
N

i
i

F F P j
=

= Δ∑               (26) 

When N approaches infinity, (26) becomes 
η

η

η Γ η η
0

0( ) ( ) exp[ ( ) ].F F P j d= ∫             (27) 

In order to have (27) valid for every η, a 
definition for Γ at η0 is added to have 

     
otherwise .

η η
Γ η ν η

η η

0

2 2 2 2

0 ,
( ) ( ) ,

sin cos
ab

a b

⎧ =
⎪= ⎨
⎪ +⎩

   (

So

28) 

, to compute a WGM field component at a 
general point Pη

r, we find the projection of Pη
r on 

the

            (29) 

It is important to make sure the 
used. In (29), η is associated with the outer ellipses 
e, 

 ellipse e, and denote the projection as (ξ0, η). 
The distance from Pη

r to the ellipse is dr. Then, on 
the ellipse with two axes (a+dr, b+dr), we locate a 
point P0

r that can also be defined by the osculating 
circle C0 and the distance dr. For example, in Fig. 
4, P0

r is at (R0+d, π/2), R0 is the radius of C0. The 
electromagnetic field at P0

r can be computed from 
WGM field in a circular resonator as described in 
[17], and the EM field at Pη

r can be determined 
from  

η

(PF η
η

Γ η η
0

r r
0) (P ) exp[ ( ) ].F j d= ∫

correct η is 

and it can be determined from (3) or (5).  

 
Fig. 4. Illustration of the elliptical microring with 
osculating circles. 

Considerations 
he EM WGM field is studied by computing 

 
B. Computational 

T
six field components ( , ,E E Ez ρ φ zand , ,H H Hρ φ

The z components are along length of the 
microring, and the other g 
the radial and azimuthal axes of the elliptical cross 
section. To use the relation in 

). 

two components are alon

(29) to compute EM 
field at the point Pη

r, the distance from this point 
to the outer ellipse and η is needed. It is simpler if 
the problem is discussed in the rectangular 
coordinate system. Suppose Pη

r is at (x, y), and we 
need to find its projection (ξ0, η), which can be 
also located by (xp, yp). The distance between Pη

r 
and (ξ0, η) satisfies 

2 2 2( , ) ( ) ( ) .r p p p pd x y x x y y= − + −       (30) 
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The projection of Pη
r is on the outer el

it satisfies 

By making use of equati
converted to 

lipse, so 

2 2 2 2/ / 1.px a y b+ =                           (31) p

on (31), dr
2 can be 

a function of only xp or yp. In order 
for (xp, yp) to be the projection of Pη

r, dr
2 has to be 

the minimum value. So by searching for the zero 
around (x, y) of the d(dr

2)/dxp or d(dr
2)/dyp, xp and 

yp can be located and η can then be found from 
either ηcos /px a=   or    ηsin / .py b=      

                     
C. Compute  

d by an infinite electric line 
d Results

A WGM field excite
source along the length of a microring is 
computed. The perimeter of the microring is fixed 
at 36π μm, and the axial ratio is varied from 1 to 
2:1. The thickness of the microring is 4 μm. The 
source is located inside the microring on η=π/2, 
and it is 4.0 μm away from the outer boundary of 
the microring. The operation wavelength is chosen 
to be at λ=630.0 nm in free space. Magnitudes of 
the Ez component (i.e. 2 2Re( ) Im( )z z zE E E= + ) in a 
microring with an axi
Fig. 5. 

al ratio 1:1.5 is plotted in 

Fig. 5. Magnitude /m) when a:b=1.5. 

eld 
concentrates at the outer boun

 

 

 

 of Ez (v
 
It is clearly seen that the electromagnetic fi

dary of the 
microring. From the figure the field decayed to 0 
within less than 2.0 μm from the outer boundary, 
and the thickness of the ring is 4 μm. In order to 
see details of the WGM field, the real and 
imaginary parts of Ez are plotted along different φ 
as shown in Fig. 6- Fig. 8. Note that when φ=π/2, 
it is the same φ plane where the source lies. 

 

14 15 16 17 18 19 20 21 22 23
ρ (μm)

    (a)

 

Fig. 6. Real and imaginary parts of Ez for a:b=1.1,
φ=0, π/6, π/3 and π/2 respectively in (a) to (d). 
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Fig. 7. Real and imaginary parts of Ez for a:b=1.5, 
φ=0, π/6, π/3 and π/2 respectively in (a) to (d). 

Fig. 8. Real and imaginary parts of Ez for a:b=2, 
φ=0, π/6, π/3 and π/2 respectively in (a) to (d). 
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D. Discussion 
From section III, it is seen that the eccentricity 

fects the resonance by shifting the 
res

 phase of Ez changes along the 
co

of the ellipse af
onant frequency. Therefore when the axial ratio 

of the microring is changed, the excitation 
frequency needs to be shifted simultaneously to 
achieve a resonance. Otherwise, if the frequency is 
fixed to resonate for the circular microring, then as 
the microring becomes more eccentric, the 
excitation frequency is further away from the 
resonance, and it results in the decreased intensity 
of the EM field. 

From Fig. 6 to Fig. 8, especially (c) and (d) of 
these figures, the

nstant φ line. This change can be understood 
with the illustration shown in Fig. 9, where the 
field at point P1 has same phase as fields at points 
on l. Ps is the source point. Fields at these points 
are computed from WGM in the osculating circle 
of the outer ellipse at P2’. The data are plotted 
along a constant φ while P1 and P2 are not both on 
the line l, and they are not computed from the 
same osculating circle. Therefore, P1 and P2 do not 
have the same phase unless when φ=kπ or 
φ=kπ+π/2, where k is an integer.   

 

 
Fig. 9. Illustration of the phase plane of the WGM
field in the elliptical microring. 

ON 
or an elliptical microring, both WGM

resonance and computed by 
fit

microring is of the order of 100. 
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llipse. At the ends of the major 
ax

upport the WGM is associated with the 
dim
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V. CONCLUSI

F  

[3]

 field components are 
ting the ellipse with circle of curvature. In 

computations, the assumption is made such that 
the WGM field at a point in the elliptical 
microring is the same as the WGM field in the 
circle of the curvature of the ellipse at that point. 
This assumption is valid for an electrically large 
elliptical microring where the electric radius of the 

It is found that a change in the axial ratio of the 
elliptical microring results in a shift in the WGM 
resonant frequencies. Because the 

ifts the resonance, when using the same 
excitation where a circular microring reaches its 
resonance, and then deforming the circular ring 
into an elliptical ring, it gives decreased magnitude 
of the laser field. 

The method applied is valid for electrically 
large structures and therefore for the case of a 
highly eccentric e

is, the circle of curvature may have a small 
radius, which may not support a WGM, and the 
method discussed will no longer be valid for such 
geometry.  

One needs to pay attention to the thickness of 
the microring. As discussed in [9], the thickness of 
the ring to s

ension of the structure. The bigger the radius 
of the microring, the thicker the microring must 
be. This means that for an elliptical microring, it 
has to be thick enough to support WGM at two 
ends of the minor axis (For example, P0 in Fig. 4) 
because the osculating circle has the largest radius 
at this point. On the other hand, when a relatively 
thick circular microring is deformed into an 
elliptical microring, there may be a sharp edge at 
the major axis at the inner boundary and it may 
affect the computation and validity of the method 
presented. 

 
REFERENCES 

[1] N. Tes

es”, Nature, vol. 38
6. 

[2] C. Kallinger, et. al., “A Flexible Conjugated 
Polymer Laser”, Adv. Mater., vol. 10, no.12, 
pp. 920

 S. V. Frolov, A. Fujii, D. Chinn, Z. V. 
Vardeny, K. Yoshino, and R. V. Gregory, 
“Cylindrical Micro
Devices from Conducting Polymers”, Appl. 
Phys. Lett., vol. 72, no. 2, pp. 2811-2813, 
1998. 

[4] S. V. Frolov, M. Shkunov,  A. Fujii, K. 
Yoshino, and Z. V. Vardeney, “Lasing and 
Stimul
Polymers”, IEEE J. Quantum Elect., vol. 36, 
no. 1, pp. 2-11, 2000. 

106 ACES JOURNAL, VOL. 25, NO. 2, FEBRUARY 2010



[5] R. C. Polson, G. Levina, and Z. V. Vardeny, 
“Mode Characterization of Microring Polyme

 Laser Spectrum of Microdisk 

hical Magazine, vol. xx, pp. 

 a Dielectric Rod”, Radio 

ng 

las, 

l. 33, no.11, pp. 3235-3243, 

tric Waveguides with Elliptical Cross 

Oxford, England: 

lysis for Resonance 

of 

s, Van Nostrand Reinhold 

Electromagnetic Whispering 

Reyhan Baktur graduated 

Computer Eng

L. Wilson Pearson is a 

a

 
John Ballato is a Professor 

 

r 

Ga

Laser”, Synthetic Metals, vol. 111, pp. 363-
367, 2001. 

[6] N. C. Frateschi and A. F. J. Levi, “Resonant 
Modes and
Lasers”, Appl. Phys. Lett., vol. 66, no. 2, pp. 
2932-2934, 1995. 

[7] J. W. Strutt, “The Problem of the Whispering 
Gallery”, Philosop
1001-1004, 1910. 

[8] J. R. Wait, “Electromagnetic Whispering 
Gallery Modes in
Science, vol. 2, no. 9, pp. 1005-1017, 1967. 

[9] R. Baktur, L. W. Pearson and J. M. Ballato, 
“Theoretical Determination of Lasi
Resonances in a Microring”, J. of Appl. Phys., 
vol. 101, no. 4, pp. 043102-043102, 2007. 

[10] M. Abramowitz and I. A. Stegun, Handbook 
of Mathematical Functions with Formu
Graphs, and Mathematical Tables, John Wiley 
& Sons, 1972.  

[11] C. Yeh, “Elliptical Dielectric Waveguides”, J. 
Appl. Phys., vo
1962. 

[12] L. A. Lyubimov, G. I. Veselov, and N. A. Bei, 
“Dielec
Section”, Radio Eng. Electron. (USSR), vol. 
6, pp. 1668-1677, 1961. 

[13] N. W. McLachlan, Theory and Application of 
Mathieu Functions. 
University Press, 1951. 

[14] M. Matsubara, Y. Tomabechi, and K. 
Matsumura, “An Ana
Characteristics of Whispering Gallery Modes 
on an Elliptic Dielectric Disk”, Proceedings of 
APMC, Taipei Taiwan, pp. 473-475, 2001. 

[15] Y. Kogami, Y. Tomabechi, and K. 
Matsumura, “Resonance Characteristics 
Whispering-Gallery Modes in an Elliptic 
Dielectric Disk Resonator”, IEEE Tran. 
Microw. Theory Tech., vol. 44, no. 3, pp. 473-
475, 1996. 

[16] C. E. Pearson, Handbook of Applied 
Mathematic
Company, 1974. 

[17] R. Baktur, L. W. Pearson, and J. M. Ballato, 
"Computation of 

llery Mode Field in a Dielectric Microring 
Fabricated on a Metal Wire", 

Electromagnetics, vol. 29, no.1, pp. 1-12 , 
2009. 

from Clemson University in 
2005 with a doctoral degree 
in electrical engineering, 
where she studied the 
whispering gallery mode 
laser in polymer microrings. 
She is currently an Assistant 
Professor of Electrical and 

ineering at Utah State 
University. Dr. Baktur is a member of IEEE. 
 

Samuel R. Rhodes 
Professor of Electrical and 
Computer Engineering at 
Clemson University. His 
research interests include 
antennas, RF systems, and 
software-defined radio. 

s include communications, 
spatial power combining, and low-cost 
phased-array antennas. Professor Pearson is an 
IEEE fellow and has served as Editor-in-Chief 
for the IEEE Transactions on Antennas and 
Propagation and on the Editorial Board of the 
IEEE Proceedings. He currently is Chair of 
USNC-URSI Commission D. He is a recipient 
of an IEEE Third Millennium Medal, the 
Provost’s Award for Scholarly Excellence 
(Clemson University), and the McQueen 
Quattlebaum Faculty Achievement Award. 

Application are

of Materials Science and 
Engineering at Clemson 
University where he also 
serves as Director of the 
Center for Optical Materials 
Science and Engineering 
Technologies (COMSET). 
He received his B.S. and 

in Ceramic and Materials 
Science and Engineering from Rutgers. He has 
published over 160 archival papers with over 
1500 citations, holds 25 US and foreign 
patents, and has given over 120 invited 
lectures and colloquia. 

Ph.D. degrees 

107BAKTUR, PEARSON, BALLATO: WHISPERING GALLERY MODE LASER IN AN ELLIPTICAL MICRORING




