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Abstract ─ In order to improve the precision of the 
numerical result, the fast convergent Galerkin's 
type of boundary element method (BEM) with one 
order basis function is developed to calculate the 
grounding system buried in the vertical multilayer 
earth model. In this paper, the method is taken to 
simulate and analyze a grounding system 
including a floating electrode with any 
complicated structure, which can be located 
anywhere in the vertical multilayer earth model. 
The quasi-static complex image method (QSCIM) 
and the closed form of Green's function for the 
vertical multilayer earth model are introduced; the 
QSCIM is implemented by the matrix pencil (MP) 
approach. 
 

Index Terms ─ Boundary element method, 
grounding system, quasi-static complex image 
method.  
 

I. INTRODUCTION 
There have been lots of papers researching the 

transient performance of  AC substation grounding 
systems [1-8]; meanwhile, there also have been 
many papers studying the steady performance of 
AC substation grounding systems, especially in 
the low-frequency domain (about 50 to 60 Hz) [9-
29]. This paper focuses on steady performance in 
low frequency of the AC substation grounding 
systems. References [9-17] are based on the 
unequal potential mathematical model, and 
references [18-29] are based on the equipotential 
mathematical model. In this paper, only the 
equipotential mathematical models for grounding 
problems buried in the vertical multilayer earth 
model will be discussed, and we can observe these 
equipotential mathematical model references [18-

29] with some variations: electrostatic theory is 
used in [18-26], while quasi-static electric field 
theory is used in [27-29]. For grounding problems 
in the vertical earth model case at a low frequency 
domain, [17] discusses the grounding problem 
based on an unequal potential mathematical 
model; however, [27-29] discusses the grounding 
problem basing on equal potential mathematical 
model. 

In the papers [27 and 28], the infinite 
Maclaurin series is used to expand the integral 
kernel of Green's function of a Hertz dipole to 
avoid infinite integrals about Bessel function. 
Meanwhile, the complex image method based on 
the same Maclaurin’s series expansion has been 
studied for horizontal multilayer earth model in 
the early references [30 and 31]. To avoid an 
infinite series, a method named quasi-static 
complex image for horizontal and vertical 
multilayer earth model is used in references [13-17, 
and 29]. It points out that the integral kernel of 
Green’s function can be expanded to the finite 
exponential term series, and hence, the complex 
image method requires only four to six images to 
obtain accurate results.  

BEM for solving the grounding system 
problem has been pioneer researched in [25 and 
26]. However, the applications of the BEM for 
grounding systems are also based on the direct 
current electrical field theory. The BEM has been 
developed to calculate the AC grounding system’s 
problem based on the quasi-static electrical field 
theory in paper [29], recently. However, the zero 
order basis function is used in paper [29].  

To improve the precision of numerical results, 
a hybrid with the closed form of Green’s function 
of the vertical multilayer earth model, fast 
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convergent Galerkin’s type of the BEM combined 
with one order basis function is developed in this 
paper, the QSCIM and the closed form of Green’s 
function for vertical multilayer earth model are 
introduced, and the QSCIM is implemented by the 
MP approach. So it can be used to calculate the 
currents distribution along both the grounding 
system and the floating metallic conductors buried 
in the vertical multilayer earth model; meanwhile, 
not only the conductive effect of current leaking 
into the vertical multilayer earth model, but also 
capacitive effects from the vertical multilayer 
earth model, have been considered in the method. 
 

II. THE BASIS OF THE SIMULATION 
METHOD 

 

A. 2D BEM 
In the numerical simulation of the grounding 

system including a floating electrode buried in Ns-
layer earth model, the grounding system including 
the floating electrode is divided into small 
cylindrical segments. First, supposing the system 
consists of total lN  segments of cylindrical bars. 
Then, considering the leakage currents density iJ  
( lNi ,,1 ) emanating from the surface of each 
segment as unknowns. Next, constructing an 
equation system, and supposing the grounding 
system and floating electrode are equipotential, and 
the scalar electrical potential (SEP) of each segment 
are also unknown. In this way, by solving the 
equation system, the currents can be obtained. 
Finally, the SEP at any point can be calculated by 
the contributions of all the currents.  

From [25, 29, and 35], applying BEM, we have 
weighted the residual method as 
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Here, lNj ,,1 , iS  and jS are the surfaces of 
ith and jth segments, dS'i and dSj are the infinite 
small surface elements of the cylindrical segments. 
Both basis functions and weight function 
{ )'()( rN s

n , )'()( rW s
m , Mnm ,,1,  } defined on S. 

It should be pointed out that 2D discretizations 
required to solve the above equations in real cases 
(grounding grids) imply an extremely large number 

of degrees of freedom. Taking into account that the 
coefficients matrix in Eq. (1) is not sparse, and that 
2D integration in Eq. (1) must be performed twice 
over the electrode surface, some reasonable 
simplifications must be introduced to reduce 
computational cost under an acceptable level. 
 
B. Approximated 1D BEM 

It is reasonable to suppose that the leakage 
current density is constant around the cross section 
of the cylindrical electrode [32-35], and seems not 
restrictive whatsoever if we take into account the 
real geometry of the grounding grids.  

Let l be the whole set of axial lines of the 
buried conductors; let lrˆ  be the orthogonal 
projection of a generic point Sr  ; let )ˆ(rD be the 
conductor diameter and suppose all diameters of  
the conductor segments are the same; and let )ˆ(rJ  
be the approximated leakage current density at this 
point (assumed uniform around the cross section) in 
each segment, we can have 
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where sNj ,,1  and the Green's function of a 
point current source within the half infinite 
homogenous earth model is  
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)'ˆ,(~ rrG  is the average of kernel )',( rrG  around 
the cross-section at 'r̂ [25], 111  j  is the 
complex conductivity of the homogenous earth.  

As the leakage current is not really uniform 
around the cross-section, variational equality Eq. 
(1) does not hold anymore if we use Eq. (2). 
Therefore, it is necessary to restrict the class of 
weighting functions to those with circumferential 
uniformity, obtaining 
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where lNj ,,1 , idt  and jdt  lie on il  and jl , 
respectively. For all members )ˆ(rW  of a 
suitable class of weighting functions on l , 

)'ˆ,ˆ(ˆ rrG  is the average of kernel )',( rrG  
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around cross sections at r̂  and 'r̂ [25]. The 
Green's function of a point current source 
within the half infinite homogenous earth 
model is 
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For a given set of 1D boundary elements 
},,1;{ l

i Nil   and basis functions ),ˆ({ rN
il  

},,1 Mi  defined on l , the whole set of axial 
lines of the buried conductors l  and the 
unknown leakage current density )ˆ(rJl  of 
each segment can be discretized as  
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Finally, for a given set 
);ˆ({ rW

jl },,1 Mj  of weighting functions 
defined on l , variational statement of Eq. (4) 
is reduced to a linear equations system: 
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(8) 
where 1, , .lj N   

To apply a Galerkin-type of the BEM, we 
use Galerkin's weighting approach (weighting 
functions are identical to basis functions), 

)ˆ()ˆ( rNrW
ii ll  , not like [29], which supposes 

that the current density )ˆ(rJ
il

( lNi ,,1 ) 
uniformly emanates from the surface of each 
segment, in order to improve that of the 
numerical result's precision, here one order 
basis function is used, and set 2M , 
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(11) 
where lNj ,,1 . The coefficient matrix in the 
linear system Eq. (11) is symmetric and positive 
definite [36]. 

The SEP at any point can be calculated by 
all leakage currents. 
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where sNj ,,1 . 

Extensive computing is still required to 
evaluate the averaged kernels )'ˆ,(~ rrG  and 

)'ˆ,ˆ(ˆ rrG  by means of circumferential 
integration around cross sections at point r̂  
for )'ˆ,(~ rrG  and at points r̂  and 'r̂  
for )'ˆ,ˆ(ˆ rrG . The circumferential integration 
can be avoided by means of the following 
approximations [25] 
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  (14) 
Let the total leakage current from 

grounding system be 0I , and the total current 
into and out of the floating electrode be zero. 
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For simple expression, we just consider there 
is only a grounding system and no floating 
electrode there, the equation system can be 
expanded as: 
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   is the mutual impedance 
coefficient between a pair of segments with 

nJ  or mJ  in grounding system, )1,0(,
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   are 
currents with nJ  emanating from the 
grounding system, 1  is the SEP of the 
grounding system. If floating electrodes 
existed, we can deal with it in the same way. 

Supposing the total grounding 
currents 0I emanating from the grounding 
system are known, the leakage current of each 
segment and the SEP of the grounding system 
and floating electrode can be obtained by 
solving Eq. (15). The SEP at any point can 
then be calculated by the known currents. The 
grounding impedance and admittance are 
given by the relation 
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For a semi-infinite, homogenous earth 
model, we have 
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III. THE GREEN'S FUNCTIONS 
The main task of simulating grounding systems 

is to calculate the mutual impedance coefficients 
shown in Eq. (17). If the earth is a half infinite 
homogenous conductive medium, Eq. (18) will be 
calculated easily. However, as the earth is 
sometimes regarded as a horizontal or vertical 
multilayer conductive medium in practice, an 
infinite integral about Bessel function in the 
Green’s function must be calculated, and some fast 
calculation techniques must be adopted to avoid 
the integral. As the result, the corresponding 
closed form of Green’s function of a point source 
in the vertical multilayer earth model must be 
defined. In order to explain the Green’s function 
of a vertical multilayer earth model, we will 
explain the Green’s function of a horizontal 
multilayer earth model first.  

 
A. Horizontal multilayer earth model 

Considering the low frequency (50 or 60 Hz 
and higher harmonic wave) and limited size of the 
substation, the electromagnetic wave's propagating 
effect can be neglected, so the electromagnetic 
field can be regarded as a quasi-static electrical 
field, in this way, the SEP   of a point source 
with unit current   buried in a horizontal 
multilayer earth model satisfies the Poisson 
equation, supposing the point source is located at 
the origin of the coordinate system (Fig. 1), the 
Poisson equation can be expressed as:  
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(21) 
where 1  is the complex conductivity of ith layer 
soil, and   is the Dirac delta function. The 
subscript i represents the medium in which the unit 
current is located, and j is the medium in which 
the SEP is calculated. )(ij is Kronecker’s symbol. 
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Fig. 1. A scalar point source buried in a horizontal 
2-layer earth model. 

 
The procedure for the closed form of the 

Green’s function of a point source in an arbitrary 
horizontal multilayer earth model can be referred 
in [29]. 

Here, two layer earth models are used as an 
example, according to the procedure in [29], the 
expression of 11G  can be given as follows: 
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k , h  is the thickness of the top earth 

layer. 0 , 1 , and 2  are the complex 
conductivity of air and two-layer earth, 
respectively. 

In order to avoid Maclaurin's infinite series, we 
can develop the )( kf  as an exponential series 
with finite terms by the MP approach as follows 
[38]: 
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where i  and i  are constants to be determined 
by choosing sample points of function )( kf . The 
MP approach can give highly accurate results with 
only a few terms, usually four terms, once )( kf  
is a monotonic function. How to achieve the 
exponential series with finite terms by MP can 
further refer to the appendix part. By employing 

the development expression of )( kf  Eq. (23) and 
the Lipschitz integration, we can obtain 
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where the origin of the coordinate system shown 
in Fig. 1 has been moved to the surface between 
air and earth, and the source point at )',0( z , and 
the field point at )',( z , so 22

0 )'( zzR   , 
22
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1asign and 1bsign  for 3iR  and 4iR , 

1 ba signsign for others, ii hz  2 . 

Each term except 
0

1
R

of Eq. (24) can be 

regarded as an image point source, whose location 
is indicated by iR  and amplitude by i . However, 

iR  and i  in Eq. (24) are complex numbers, and 
the electromagnetic field here was regarded as a 
quasi-static electrical field so that this approach is 
named the QSCIM. 

Similarly, we can get 11G  and 12G . 
 

B. Vertical multilayer earth model 
Just like a point source buried in a horizontal 

multilayer earth model, here the SEP   of a point 
source with unit current   buried in a vertical 
multilayer earth model also satisfies the Poisson 
equation, as we can see in Fig. 2, here we choose 
the vertical three layers earth model as an example. 

 
Fig. 2. A scalar point source buried in a vertical, 3-
layer earth model. 
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First, an image point source  12' k  
)',0,0( z  can be found in air opposite to the point 

source  )',0,0( z , which can be seen in Fig. 3(a), 
in this way, vertical three-layer medium is full of 
the air. Second, the coordinate axes   is inverted 
from the right direction to the left direction. Then, 
the coordinate axes   is anticlockwise 
circumvolved downwards with 90 degrees. Last, 
we can reset the coordinate axes x instead of old 
  and new   instead of z, which can be seen in 
Fig. 3(b). 

 
Fig. 3. How to transform the vertical, 3-layer earth 
model into a horizontal model. 

 
From Fig. 3(b), we can see that each point 

source   or '  can be considered to be buried in a 
horizontal three layer conductive medium, just like 
the point source in Fig. 1; so Green’s function of 
point source   or '  can be gotten just like the 
one buried in the horizontal three layer conductive 
media model. Apply the theory of superposition; 
the Green's function of a point source buried in the 
vertical three layer earth model can be gotten. 
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(1~4) i( ' x ) ( ') ( ') ,i a bR sign x sign x y y z z          
and 

2 2 2

(1~4) i( ' x ) ( ') ( ') .i a bR sign x sign x y y z z          

The signs are 1asign  and 1bsign  for 1iR  and 

3iR , 1asign and 1bsign  for 3iR  and 4iR ,  and 
1 ba signsign for others, ii hx  2 . Note that 

here hkekk
kf 2

23121
1)(

 
  has been expanded 

into the finite exponential terms series, which is 
different from the one of horizontal multilayer 
earth model. Meanwhile, when the two layers 
vertical earth model is considered, the complex 
images of the point source will disappear. This is 
also different from the one of the horizontal 
multilayer earth model. 

Similarly, we can get 21G , 23G , 11G , 12G , 13G , 

31G , 32G  and 33G . The Green’s function of a point 
source buried in the arbitrary vertical multilayer 
earth model can be achieved in a similar way. 

Once the closed form of Green’s function of a 
point source in the vertical multilayer earth model 
has been derived, the mutual impedance 
coefficient can be fastly calculated through Eq. 
(17). It should be pointed out that the integral of 
Eq. (17) can be analytically calculated with the 
closed form of Green’s function, for 0 order (n=0, 
m=0) term, which is described in [24], and one 
order (n=0, m=1; n=1, m=0; n=1, m=1) terms can 
refer to [25]. 

 
IV. SIMULATION RESULTS AND 

ANALYSIS 
According to the approach introduced in this 

paper, a FORTRAN language program has been 
implemented; the program can simulate a 
grounding system and up to the vertical three-layer 
earth model.  

 
A. Verification of the approach 

To verify the result of the method proposed in 
this work, some cases solved by other authors are 
studied. 

The first case, from [28], is a horizontal 
grounding electrode of 20m length and 0.16m 
radius, buried at ml 10   depth in the vertical, 
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three-layer earth, where 
1

2
21 


p , 

2

3
32 


p , 

mS01.01  , 01 81  , 02 5  , 03 2  , 
md 3 , Hzf 50 , and AIe 300 , which can be 

seen in Fig. 4. 

 
Fig. 4. Configuration of a simulated grounding 
conductor. 

 
There are two results in [19]: (1) 

mhdX A 411  , o901  , and o01  , the 
result can be seen in Table I; and (2) 

11  hdX A , o9011  , the result can be 
seen in Tables 2 and 3. 

The second case also comes from [28], which 
can also be seen in Fig. 4. The vertical three-layer 
earth model is considered, whose left layer soil's 
conductivity and permittivity are 

mS0.001   and 01   , the middle layer 
soil’s conductivity and permittivity are 

mS1
2 0.1000  and 02 5  , its thickness is 

md 5.1 , the right layer soil’s conductivity and 
permittivity are mS1

2 1.250   and 03 9  , a 
horizontal grounding electrode of ml 201   length 
and mm23.9  radius and buried at ml 10   depth in 
the vertical three-layer earth is chosen. Other 
parameters are mX A 5.4 , mYA 0.0 , Hzf 50 , 
and o901  . Good agreements can be seen in 
Table 4. 

 
B. The computational cost and accuracy of the 
approach 

First, by considering some reasonable 
simplification, the approach calculates the 
grounding system based on the 1D Galerkin type 

of BEM. Second, the main task of simulating 
grounding system is to calculate the mutual 
 
Table 1: Comparison of our results )(gZ  with a 
published model: 01.021 p  and 0.1032 p  

Ref. [9] Zero-order 
function 

One-order 
function 

je je je
 

Table 2: Comparison of our results )(gZ  with a 
published model: 01.021 p  and 0.1032 p  

h Ref. [9] 
Zero-
order 

function 

One-order 
function 

0 2.77-
j5.34e-6 

2.75-
j2.42e-6 

2.75-
j2.41e-6 

1e-3 2.78-
j2.56e-6 

2.34-
j4.14e-6 

2.34-
j4.14e-6 

1e-1 3.45-
j9.75e-6 

3.24-
j12.89e-6 

3.24-
j12.88e-6 

1e-0 5.44-
j17.83e-6 

5.67-
j21.18e-6 

5.67-
j21.19e-6 

1e1 7.23-
j13.54e-6 

7.58-
j15.11e-6 

7.58-
j15.12e-6 

1e3 7.72-
j11.88e-6 

7.99-
j11.99e-6 

7.99-
j11.98e-6 

1e5 7.70-
j11.01e-6 

8.00-
j11.95e-6 

8.00-
j11.97e-6 

 
Table 3: Comparison of our results )(gZ  with a 
published model: 0.10021 p  and 1.032 p  

h Ref. [9] 
Zero-
order 

function 

One-order 
function 

0 7.70-
j115.34e-6 

7.80-
j135.55e-6 

7.80-
j135.54e-6 

1e-3 7.69-
j130.01e-6 

8.20-
j152.16e-6 

8.20-
j152.15e-6 

1e-1 7.04-
j104.27e-6 

7.30-
j118.11e-6 

7.30-
j118.12e-6 

1e-0 5.06-
j46.46e-6 

4.87-
j49.01e-6 

4.87-
j49.02e-6 

1e1 3.25-
j11.27e-6 

2.96-
j10.11e-6 

2.96-
j10.10e-6 

1e3 2.81-
j4.65e-6 

2.55-
j2.94e-6 

2.55-
j2.93e-6 

1e5 2.77-
j4.28e-6 

2.54-
j2.87e-6 

2.54-
j2.86e-6 
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Table 4: Comparison of our results )(gZ  with a 
published model [19] 

1  Ref. [9] 
Zero-
order 

function 

One-order 
function 

0 15.51-
j9.84e-5 

15.12-
j9.14e-5 

15.04-
j9.10e-5 

90 15.58-
j9.90e-5 

15.16-
j9.14e-5 

15.08-
j9.09e-5 

60 15.85-
j12.82e-5 

15.32-
j9.16e-5 

15.24-
j9.16e-5 

90 16.82-
j12.29e-5 

15.96-
j9.34e-5 

15.96-
j9.34e-5 

 
impedance coefficients as shown in Eq. (17). 
Although the multilayer earth model must be 
considered in a real practice problem, the closed 
form of Green’s function of a point source in the 
multilayer earth model can be taken to avoid 
verbose calculation about infinite integral or 
Maclaurin’s series [25-35] by applying the 
QSCIM. Third, the analytical formula about 
mutual impedance is adopted to avoid numerical 
integral in the approach. Therefore, the approach 
is very fast. For a general real practiced grounding 
system, it needs only several seconds on a P4 
computer. Verification of the approach has been 
shown in the above section, by comparing our 
results with those from a different method in other 
references, especially with measurement data. We 
can see that the accuracy of our approach is good. 
 
C. Numerical result analysis 

A complex grounding system can be seen in 
Fig. 5. The earth is modeled as a three vertical 
layers conductive media, whose conductivities and 
permittivity are mS1

1 0.100  , mS1
2 0.800  , 

mS1
3 0.300  , 01 5  , 02 12  , and 

03 10  . The middle layer's thickness is md 5 . 
All the conductors’ radius of grid is 10mm, and 
rods' radius of 16mm. The external excited AC 
current 1000A of current with power frequency 
(50Hz) is injected from the corner of the 
grounding system. 

The calculated numerical results can be seen 
in Table 5. Note: gZ  is the grounding impedance; 

gGPR  is the grounding potential rise (GPR) of the 
grounding grid; fSEP  is the SEP of the floating 
grid; 0I  is the total leakage current of the 

grounding system; and if is the total net current 
flowing into and out of the floating grid. 

 
Fig. 5. Grounding system and floating grid. 

 
Table 5: Numerical results 

  f=50Hz case f=800Hz case 
)(gZ  1.78-j0.62e-5 1.78-j0.99e-4 

)(VGPRg  1775.74-j6.e-3 1775.74-j003 
)(VSEPf  437.19-j2.e-3 437.18-j0.03 

)(0 AI  100.0-j1.24e-10 100.0+j3.26e-9 
)(AI f  -1.9e-6+j2.9e-11 1.7e-6-j5.8e-10 

 
It can be seen that the total leakage current of 

the grounding system is close to the external 
injected current and net current flowing into and 
out of the small grid is near zero. All these verify 
the accuracy of this model. 

The 3D distribution of SEP’s absolute value 
along the earth surface is given in Fig. 6, and the 
3D distribution of step voltage’s absolute value 
along the earth surface is given in Fig. 7. 

 
Fig. 6. The 3D distribution of the SEP absolute 
value for a vertical, three-layer earth model, 
obtained by the QSCIM. 
 

It can be seen from Fig. 6, that (1) the SEP rise 
of the surface above the grounding grid is much 
higher, meanwhile, the distribution has been 
divided into three parts. This is because an 
external excited AC current was injected from the 
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grounding grid; the vertical three layer earth 
model has re-distribution of the leakage current 
along the grid. (2) the GPR is centralized above 
the grounding grid, the ground surface’s SEP 
becomes lower around the grounding grid, 
meanwhile, the GPR along the interface between 
the different vertical layer earth has become small, 
so the step voltage will become bigger, the large 
value of step voltage is distributed around the 
earth surface above the edge of the grounding grid 
and the interface, which can be seen from Fig. 7. 
So some safety measures must be taken to mitigate 
the question. 
 

 
Fig. 7. The 3D distribution of the step voltage 
absolute value for a vertical, three-layer earth 
model, obtained by the QSCIM. 
 

 
V. CONCLUSION 

1. The quasi-static complex image approach is 
very efficient to simulate the grounding grids 
in vertical multilayer earth models. Usually, 
few quasi-static complex images can provide 
accurate simulation results.  

2. Novel closed form of Green’s functions for 
vertical multilayered earth model achieved by 
the method of quasi-static complex images 
have been introduced in this paper. 

3. Linear basis function has succeeded in being 
realized in the BEM for simulating grounding 
systems. 

4. A program based on Galerkin’s BEM has been 
developed for simulating grounding systems 
with any complicated structure buried in up to 
the vertical three-layer earth models. 

 

APPENDIX: THE QSCIM BASED ON MP 
METHOD 

The QSCIM can be implemented with a MP 
approach. The MP approach is approximating a 
function by a sum of complex exponentials, and 
works well once the function monotonically 
decays. 

From [38] and [39], if a function )(xf  can be 
expanded into finite exponential series, as below 

1
( ) .i

M
x

i
i

f x e


                         (26) 

There are three parameters to be decided, such 
as M , i  , and i . 

In order to get these parameters, we first decide 
maximum sample points according to the 
characteristic of function )(xf , that means 
maximum value for maxx  can be obtained. Once 

maxx  has been known, we can get uniformly 
discrete values of )(xf  within scope )0( maxxx  . 
So, we have uniform discrete function values of 

)(xf  with ))1(,),2(),1(),0(( Nffff   
corresponding to value of x as 

))1(,,2,,0( xNxx    or ),,,,0( max21 xxx  . Here, 
x  is the rate of sampling. We can obtain 





M

i

k
ii zxf

1

)(   ( 0, , 1),k N    (27) 

where 
xk

i
iez         ( 0, , ).i M     (28) 

 
A. How to decide the number M 

Since, we have the total N  number of uniform 
discrete function values of )(xf , we can get the 
matrix ][Y  from the sampling data )(xf  by 
combining ][ 1Y  and ][ 2Y as 

( ) ( 1)

(0) (1) ( 1)
(1) (2) ( 1)

[ ] ,

( 1) ( ) ( 1) N L L

f f f L
f f f L

Y

f N L f N L f N
  






   

 
 
 
 
 
 




   


(29)
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1

( )

(0) (1) ( 1)
(1) (2) ( )

[ ]

( 1) ( ) ( 2)

,

N L L

f f f L
f f f L

Y

f N L f N L f N
 





   

 
 
 
 
 
 




   


(30) 

2

( )

(1) (2) ( )
(2) (3) ( 1)

[ ] ,

( ) ( 1) ( 1) N L L

f f f L
f f f L

Y

f N L f N L f N  

 
  
 
     




   


(31) 
where L  is referred to as the pencil parameter [38] 
and [39]. 

Note that ][ 1Y  is obtained from ][Y  by 
omitting the last column, and ][ 2Y  is obtained from 

][Y  by omitting the first column. The parameter L  
can be chosen between 3N  and 2N . 

Next, singular-value decomposition (SVD) of 
the matrix ][Y  can be implemented out as 

[ ] [ ][ ][ ] ,HY U V                      (32) 
where ][U and ][V  are unitary matrices, comprised 
of the eigenvector of HYY ]][[ and ][][ YY H , 
respectively, and ][  is a diagonal matrix 
including the singular values of ][Y , i. e.  

[ ] [ ][ ] [ ].HU Y V                       (33) 

The choice of the parameter M  can be 
achieved at this stage by studying the ratios of 
various singular values to the largest one. 
Typically, the singular values beyond M  are set 
equal to zero. The way M  is chosen is as follows. 
Observe the singular value c such that 

max

10 ,pc


                     (34) 

where p  is the number of significant decimal 
digits in the data. For example, if the sampling 
data is accurate up to three significant digits, the 
singular values for which the ratio in Eq. (34) is 
below 310  are essentially useless singular values, 
and they should not be used in the reconstruction 
of the sampling data. 

We next introduce the “filtered” matrix, 
]'[V , constructed so that it contains only M  

predominant right-singular vectors of ][V ; 

1 2[ '] [ , , , ].MV v v v              (35) 
The right-singular vectors from 1M  to L , 

corresponding to the small singular values, are 
omitted. Therefore, 

1 1[ ] [ ][ '][ ' ] ,HY U V                (36) 

2 2[ ] [ ][ '][ ' ] ,HY U V                (37) 
where ]'[ 1V  is obtained from ]'[V  with the last 
row of ]'[V  omitted, ]'[ 2V  is obtained by 
deleting the first row of ]'[V ; and  ]'[  is 

obtained from the M  columns of ][  

corresponding to the M predominant singular 
values. 
 
B. How to decide i  

To motivate the MP method, we can use 
the two LLN  )(  matrices, 1Y  and 2Y . We 
can rewrite 

2 1 0 2[ ] [ ][ ][ ][ ],Y Z R Z Z               (38) 

1 1 2[ ] [ ][ ][ ],Y Z R Z                      (39) 
where 

1 2
1

1 1 1
1 2 ( )

1 1 1

[ ] ,M

N L N L N L
M N L M

z z z
Z

z z z     
 

 
 
 
 
 
 




   
  

(40) 

1
1 1

1
2 2

2

1

1
1

[ ] ,

1

L

L

L
M M M L

z z
z z

Z

z z








 
 
 
 
 
  




   


                 (41) 

0 1 2[ ] [ , , , ],MZ diag z z z                (42) 

1 2[ ] [ , , , ],MR diag R R R                (43) 

where ][diag  represents a MM   diagonal 
matrix. 

Now, we introduce the matrix pencil 
2 1 1 0 2[ ] [ ] [ ][ ]{[ ] [ ]}[ ],Y Y Z R Z I Z       (44) 

where ][I  is the MM   identity matrix. We can 
demonstrate that, in general, the rank of 

]}[]{[ 12 YY   will be M , 
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provided MNLM  . However, if iz , 
Mi ,,2,1  , the ith row of ]}[]{[ 0 IZ   is 

zero, and the rank of this matrix is 1M . Hence, 
the parameters iz , may be found as generalized 
eigenvalues of the matrix pair ]}[];{[ 12 YY . 
Equivalently, the problem of solving for iz  can be 
transformed into an ordinary eigenvalue problem, 

1 2{[ ] [ ] [ ]},Y Y I                          (45) 
where ][ 1Y  is Moore-Penrose pseudo-inverse 
of ][ 1Y , and is defined as 

1
1 1 1 1[ ] {[ ] [ ]} [ ] ,H HY Y Y Y                    (46) 

where the superscript ``H"  denotes the conjugate 
transpose. 

The eigenvalues of the matrix 

2 1 1 2{[ ] [ ]} {[ ] [ ] [ ]} ,L M M MY Y Y Y I 
     

(47) 
are equivalent to the eigenvalues of the matrix 

2 1 1 2{[ ' ] [ ' ] } {[ ' ] } {[ ' ] } [ ].H H H HV V V V I        
(48) 

This methodology can be used to solve for iz . 

Lastly, we point out that in this case iz  

represents i . 
 

C. How to decide i  

Once M  and the iz  are known, i , are solved 
with the help of the following least-squares 
problem: 

1

1 2 2

1 1 1
1 2

1 1 1(0)
(1)

.

( 1)

M

N N N
M M

f
z z zf

z z zf N




  

    
    
     
    
         




    


(49) 

 
D. Example for MP 

The kernel of Green’s function of point source 
lying in the vertical multilayer earth model can be 
expanded into a sum of complex exponential terms. 
Generally speaking, only a few terms of quasi-
static complex images can arrive at a very high 
precision. We will show merit of this method 
through the vertical three-layer earth model. 

Earth’s conductivities and permittivity’s 
are mS1

1 0.100  , mS1
2 0.200  ,

mS1
3 0.300  , 01 5  , 02 12  , and 

02 10  , respectively. The middle layer earth 
thickness is m5 . With the MP approach, only two 
terms of the quasi-static complex images can 
arrive at relative error %1.0 . From Fig. 8 and Fig. 
9, we can see that the two curves are superposed to 
each other, the two terms of quasi-static complex 
images' coefficients are given in Table 6. 

 
Fig. 8. Two curves from function and simulation 
(real part). 
 

 
Fig. 9. Two curves from function and simulation 
(imaginary part). 
 
Table 6: Coefficients of the quasi-static complex 
images for a vertical, three-layer earth model 
 i i  i  
1 6.692e-2-j7.298e-4 10.009-j1.341e-6 
2 4.423e-3-j1.451e-3 19.027+j3.627e-5 
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