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Abstract — A recently developed modeling scheme
for the numerical simulation of coupled magnetomecha-
nical systems is presented. The scheme allows the cal-
culation of dynamic rigid motions as well as deformati-
ons of magnetic and anti-magnetic materials in a magnetic
field. The equations governing the magnetic and mecha-
nical field quantities are solved using a combined Finite-
Element/Boundary-Element-Method (FEM-BEM). To cir-
cumvent the nonlinear system of equations resulting from
a direct coupling of the magnetic and mechanical systems,
the calculation of the magnetic forces is based on predictor
values of the magnetic quantities. Therewith, a decoup-
ling into a magnetic and mechanical matrix equation can
be achieved. To ensure the strong coupling between the
magnetic and mechanical quantities, a sophisticated Pre-
dictor/Multicorrector Algorithm is used resulting in an ef-
ficient iteration between the two matrix equations within
a single time step. Computer simulations of an electroma-
gnetic forming system and a magnetomechanical transdu-
cer immersed in an acoustic fluid (acoustic power source)
show good agreement between simulation results and mea-
sured data.

1. INTRODUCTION

In magnetomechanical systems a magnetic material is
subject both to rigid motions and to elastic (plastic) defor-
mations, which in turn may strongly influence the magne-
tic field and thus the magnetic force distribution. There-
fore, a modeling scheme must take into account the strong
coupling of the magnetic and mechanical field quantities
f1], [2}-

A typical magnetomechanical system is shown in Fig.
1. When the coil is loaded by an electric current pulse,
eddy currents are induced in the metallic cylinder. The
interaction between these eddy currents and the magne-
tic field results in magnetic volume forces acting on the
body. Therewith, in the case that the stress within the
workpiece exceeds the yield point of the material, the me-
tallic cylinder will experience plastic deformations. These
deformations modify the magnetic field and thus the force
distribution acting on the magnetic cylinder. To obtain a
full description of the dynamic behaviour of the electro-
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Fig. 1. Electromagnetic forming of a metallic cylinder

magnetic forming system, the following coupling mecha-
nisms have to be considered:

e The coupling between the magnetic and mechanical
field is due to magnetic volume forces caused by eddy
currents in the metallic cylinder and the magnetic
field of the coil.

o The resulting plastic deformations (movements) of
the metallic cylinder in the magnetic field cause ad-
ditional eddy currents in the metallic cylinder (mo-
tional emf).

¢ The metallic cylinder changes its geometry signifi-
cantly during the eleciromagnetic forming process
which in turn strongly influences the magnetic field.

Applying a numerical technique to calculate the quanti-
ties of the magnetomechanical system, the following main
problems will arise:

¢ Using a standard finite element code, the moving
parts cause mesh distortion and, therefore, may in-
troduce geometric nonlinearities. In addition, if the
displacement exceeds the element size, a new meshing
of the whole simulation area is required.

o A direct coupling of the magnetic and mechanical
quantities leads to a nonlinear system of equations,
due to the magnetic force.



+ The term of the motional emf leads to numerical dif-
ficulties in the partial differential equation describing
the magnetic field.

I11. GOoVERNING EQUATIONS

In the case of low frequencies (neglecting displacement
current} magnetic systems with stationary and moving
parts can be described by the following partial differential

equation
X (lV % /I)
7]
(1)

In (1) A denotes the magnetic vector potential, Jo the free
current density, 4 the permeability , V the scalar electric
potential, ¥ the velocity and v the conductivity. The term
~F % (V x A) expresses the induced eddy current density
in an electric conductive body moving with velocity ¢ in
a magnetic field (motional emf).

In the case of linear elasticity and isotropic materials,
the dynamic behaviour of mechanical systems can be de-
scribed by

e
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where d is the mechanical displacement, fv the volume
force, E the modulus of elasticity, » Poisson’s ratio and p
the density. The magnetic volume force due to a magnetic
field of magnetic induction B (magnetic field intensity H)
acting on a body with current density Jis given by

fv (3)

To calculate the plastic deformations (electromagnetic
forming of an aluminium cylinder, Fig. 1) a visco-plastic
model with consolidation is used. The state of stress is
represented by a stress temsor with a single component,
tangential to the wall of the cylinder and uniform over
its surface. Furthermore, no account is taken of the fact
that during the forming process the workpiece becomes
shorter and its wall thinner. Therewith, the equilibrium
equation for the cylinder expanding plastically under an
internal pressure is given by

= JxB.

(4)

with e, r and p being the thickness, radius and mass den-
sity of the workpiece, o the radial stress, Fr the radial
electromagnetic pressure and v; the radial velocity. As-
suming a uniform stress over the surface of the tube, the

magnetic pressure is obtained by

27r/ /errdrdz
P = .

T 2rrh (5)

n (5) k denotes the length of the metallic cylinder and
fve the radial component of the magnetic volume force fv
in (3).

The relation between stress, strain and strain rate has
the form [3]:

de\’
U—Ud+)\€+7)(dt) , (6)

where ¢4 is the yield point, & the relative strain, de/dt
the strain rate, A the consolidation coefficient, 5 the coef-

ficient of viscosity and é a coefficient such that (6) closely
approaches the characteristics determined experimentally.

I1I. FEM-BEM- AND TIME-DISCRETIZATION

Applying the FE-formulation to (1) leads to the FE-
matrix equation

L{R}+P{A} + P{Av} — C{q} @
with conductivity matrix L, standard permeability matrix
P, permeability matrix P due to motional emf, coupling
matrix €, nodal magnetic vector potentials { A}, nodal ti-
me denva.twes of the magnetic vector potential {£}, no-
dal normal derivatives of the magnetic vector potential
{g} and source vector {Q}.

The boundary element discretization of regions not con-
taining electric currents yields the following BE-matrix

equation

H{A}-G{q} = {0}
with the two boundary element matrices H and G.
The coupling of the finite and boundary elements ana-

logous to [4] leads to the following matrix equation:

(R
S G- () e

{g}
Considering dynamic rigid motions of magnetic and anti-
magnetic materials the matrices L, P and C remain con-
stant throughout the whole simulation. This holds true in
the case of small deformations (linear elasticity), too. The
coordinates of the boundary elements have to be updated
according to the mechanical displacements. Therewith,
the matrices H and G will vary during the simulation,
which will be indicated in the following by the letter a.
Due to the updating of the coordinates of the boundary

(8)
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elements, the motional emf is implicitly taken into ac-
count and the term P{Av} in (7) vanishes. Therefore (9)

reduces to
(55 %) (19)-(9)

Applying the FE-formulation to (2) leads to the well-
known matrix equation for the mechanical quantities

M{a} + C{v} + K{d} — {F(4,84/8t,d)= {0} (11)

with mass matrix M, damping matrix C, stiffness matrix
K, force vector {F} including the nonlinear term, nodal
accelerations {a}, nodal velocities {v} and nodal displa-
cements {d}.

For the time discretization of (10) the generalized ira-
pezoidal method [5) is used, which has the following pre-
dictor/ corrector form:

(10)

Predictor:

{A}* + At(1— e ){R}"
{g}" + At(1 — yp){r}"

(12)
(13)

{4}
{4t =

Eguation:

L* é- {R}n+1 _ {Q}n+1
( ;i Lol ) ( {T}ﬂ-i-l ) - ( {0} ) (14)
( P{A} - {3} )
*H{A} —*G{d}

L* =L+ vAtP , C*=-—pALlC (15)

*H* = ypAt*H , *G* = —ypAt*G. (16)
Corrector:

(APt = (A} ewaAdRPT ()

(" = {@+wat{rT (18)

In (12) - (18) n denotes the current step, At the time step
and 4p the integration parameter.

Using the Newmark Method [5] with the two integration
parameters 3 and vy for the time discretization of (1)
the following predictor/corrector algorithm is obtained:

Predictor:
@) = (& +te) +5A7%(1-26){a}” (19)
{5} = {v}"+(1-m)at{e}” (20)
Equation:
M*{a}™* = {FA™, R 4™} - K{d} - C{5}
M* = M+ uAtC+BALK (21)
Corrector:
{dy** = {dp+par{a™ (22)
)"+ = {8} + yuAt{a}™H! (23)
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IV. PREDICTOR/MULTICORRECTOR ALGORITHM

The direct coupling of (14) and (21) leads to a nonli-
near and unsymmetric systermn of equations. Using pre-
dictor values for the calculation of the magnetic volume
force, a decoupling into a magnetic and mechanical matrix
equation can be achieved. To ensure the strong coupling
between the magnetic and mechanical quantities the fol-
lowing Predictor/Multicorrector Algorithm is used:

STEP 1: Set the iteration counter ¢ to zero and define
the predictor values as following:
Magnetic quantities:

{4}
{4}
{R} =

{A}Y" + (1—yp)AH{R}"
{g}" + (1 —yp)At{r}"
{r} = {0}

Mechanical quantities:

“{d}

_ {d}™ + At{z}" + L (1 - 28)At? {a}"
i} {v}" + (1 — m)Ai{a}” (25)
{a} {0}

STEP 2: Solve the matrix equation:

(L" C 0 {AR} i_{AQl}
M. )({Ar} =(<{AQ2}
0 0 M* {Aa} HAQs)

‘ (26)
HaQi} = {QT -PHAI+C @) -L{R)
. +C {7}
{aQ:) = G -HU{A}H{RI+'G 7}
{aQ:} = {FCA'R')}-K'{d}-C {3} -M'{a}

STEP 3: Perform the corrector phase (predictor update)
Magnetic guantities:

{4} = {A}+pAt{AR}

g = Hq} + e At{Ar} 27)
“iR} = {R}+{AR)

H1F = H{F)}+ {an)

Mechanical quantities:

“#d} = i{d} + fAL*{Ad)

5} = Hi}+yuAt{da} (28)
+i{a} = *a}+{Aa}

STEP 4: Next iteration: go to STEP 2
STEP 5: Solution for step (n+1)

In (24) - (28) i denotes the iteration counter, HAQ ),
{IAQs} and *{AQ3} the residual vectors of the right hand
side for step (n + 1) and iteration i and {AR}, {Ar} and



{Aa} the solution vectors of the current iteration. Com-
pared to a standard iteration algorithm the main diffe-
rence consists in the fact, that the right hand side vectors
of iteration i are calculated by the difference of the sour-
ce vectors and the solution of iteration i. Therewith, the
residual of the right hand side vectors as well as the so-
lution vectors converge to zero by increasing number of
iterations and thus are used for stopping the iteration.
After the iterative phase has terminated, the solution is
defined by the last iterates and the algorithm proceeds to
the next time step.

Iterative solvers - GMRES (generalized minimum resi-
dual) and CGS (conjugate gradient squared) - have been
adapted to solve (26) in a very fast way.

V. APPLICATION

A. Electromagnetic Forming System

The FEM-BEM discretization of the electromagnetic

forming systemn (Fig. 1) is shown in Fig. 2. The boun-
magnetic
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Fig. 2. FEM-BEM discretization of the electromagnetic forming
system

dary elements, deseribing the calculation area (up to infi-
nity) surrounding the coil and metallic cylinder, guarantee
the coupling of the physical quantities between the statio-
nary part (coil) and moving part (metallic cylinder). Fig.
3 shows the measured current loading the coil, which con-
sists of 12 turns. The magnetic pressure P, resulting form
the interaction of the magnetic field and the eddy currents
in the metallic cylinder, is caleulated by (5). Combining
(4) and (6) the differential equation is achieved for com-
puting the plastic deformation in radial direction, which
has been coupled to the magnetic equation analogous to
the case of linear elasticity. The metallic cylinder is ma-
de of aluminium with a yield point of 76 N/mm? (plastic
pressure of 5.067 N/mm?) {6]. Fig. (4) shows the calcula-
ted and form measuring the magnetic induction estimated
magnetic pressure. The final measured displacement and
the computed displacement as well as velocity are shown
in Fig. 5.
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Fig. 3. Measured electric current loading the coil [6]
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Fig. 5. Measured final displacement [6] and computed displacement
as well as velocity

B. Acoustic power source

The acoustic power source (Fig. 6) was optimized to
generate high-intensive mechanical pulses for the non-
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Fig. 6. Schematic of an acoustic power source

invasive destruction of concrements in human kidneys and
urinary tract. When the slab coil is loaded by an electric
current pulse, eddy currents are induced in the metal-
lic membrane. The interaction between the eddy cur-
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Fig. 7. Deformed metallic membrane-rubber structure with mecha-
nical stresses coded by a grey scale

rents in the metallic membrane and the magnetic field
results in a magnetic volume force acting on the membra-
ne. Therewith, the metallic membrane-rubber structure
is deformed and an acoustic pulse is radiated into the

Displacement (am}

Time (ps)

Fig. 8. Mecasured and simulated displacements of the metallic
membrane-rubber structure in the center at different times

106

surrounding medium. The propagation of acoustic waves
in non-viscous media is completely described by the scalar
acoustic potential ¢, which leads to the linear wave equa-
tion [7]. The deformed structure with mechanical stresses
displayed by a grey scale is presented in Fig. 7. Near the
axis, the magnetic field in contrast to the off-axis region
causes only very small forces on the structure. Therefore,
the metallic membrane-rubber structure experiences only
small accelerations but large deformations and mechani-
cal stresses in this region. Fig. 8 shows measured [8] and
simulated displacements of the metallic membrane-rubber
structure in the center at different times,

VI. CONCLUSION

A new coupled model for the numerical calculation of
magnetomechanical systems has been introduced. There-
with, the complex interaction of magnetic and mechanical
fields can be studied. The presented calculation scheme
has been applied to the numerical simulation of an electro-
magnetic forming system and a magnetomechanical trans-
ducer immersed in an acoustic fluid. The calculated and
measured data are in good agreement.
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