ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, Si: CEM & HPC

Running SuperNEC on the
22 Processor IBM-SP2
at Southampton University

D C. Nitch, A P.C. Fourie and J S. Reeve

Jeff Reeve Derek Nitch / Andre Fourie
Department of Electronics and Computer Science Department of Electrical Engineering
University of Southampton University of the Witwatersrand
Southampton South Africa

§017 IBJ, UK email:nitchi@odie.ce. wits.ac.za

email fourie@odie.ee.wits.ac.za

ABSTRACT

SuperNEC (SNEC) is an object-oriented version of NEC-2 which has been modified to execute on a
network of distributed memory processors. The matrix filling, solving and pattern computation
routines are capable of running in parallel. A number of structures have been simulated using this code
on the 22 processor IBM-SP2 machine at Southampton University. The principal problem studied was
the DC-3 at 90 MHz. LU decomposition and an iterative matrix solution scheme were used in the
study. The simulation time for this structure (which includes 3-D radiation patterns) dropped from 2.5
hours on a single processor to about 17 minutes when simulated on 12 processors using LU
decomposition. Execution times are about half of these times when using the iterative solver. The far
field patterns obtained from the simulation are compared with measured data and show good
agreement. The largest problem tackled on the IBM machine was the DC-3 simulated at 160 MHz.
This problem requires 17035 segments and was simulated in 5.3 hours on 21 processors.

INTRODUCTION

SuperNEC is an object-oriented electromagnetics code that implements the same theory as the
FORTRAN program NEC2 [1]. The program is considerably more advanced that NEC2, as it
incorporates features such as model based parameter estimation (MBPE), fast iterative solvers and a
UTD-MOM hybrid capability amongst other features. One of its primary advantages is that SNEC has
been written to operate in parallel on a network of processors.

The advantage of being able to operate in parallel is two fold. First, there is a potential reduction in the
time taken to solve a problem. Secondly, a network of processors generally has more memory at its
disposal than a single processor, thus much larger problems may be solved on a network of processors.

This paper reports on the performance of SNEC on the distributed memory, parallel IBM-SP2 machine
located at Southampton University. The principal problem analysed is a DC-3 at 90 MHz. This
structure is modelled using 5500 segments and generates an interaction matrix of 240 Mbytes. Run
times for larger problems are also presented.

A Brief History of SNEC

In 1989 the FORTRAN program, NEC2, was modified to operate in paralle] on a network of
transputers [2-3]. During this project, all the numerically intensive routines were re-written to operate
in parallel. The efficiencies achieved for the filling and factoring of the interaction matrix approached
90 percent, and even higher efficiencies were achieved for radiation pattern and near field calculations.
As such, the runtime performance of the code was very satisfactory, however, the effort required to
change the FORTRAN code was considerable. This was not necessarily due to the structure of the
code, but rather due to the paradigm in whick it was written. The use of common blocks (global
variables) and implicit variable typing were two of the main features of the program which hindered
the development and debugging of the parallel code. Making further modifications to the FORTRAN

1054-4887 © 1988 ACES

98



100

ACES JOURNAL, VOL. 13, NO. 2, JULY 1988, S1: CEM & HPC

code was therefore predicted to be as difficult as adapting the code to run in parallel. One method of
bypassing this problem was to rewrite NEC2 using a different prograrmaming paradigm [4]. The
paradigm chosen for the implementation was the object-oriented paradigm, and the language of
implementation, C++.

Converting FORTRAN to C++ is not merely a matter of translating from one language to the other.
Rather, it requires the identification of the physical and mathematical entities present in the problem
domain (segments, two-port networks, matrices etc.) and the assignment of responsibilities and
attributes to each of these entities. For example, one of the elements identified in NEC2 was the
concept of a wire segment. A segment was assigned the responsibilities of being able to move and
rotate itself. The attributes assigned to a segment include the starting and end co-ordinates of the wire
and the radius of the segment.

The primary aim of the object-oriented design was to make changing the electromagnetic parts of the
code as easy as possible. For example, one obvious requirement is the ability to change the basis
functions used in the MOM solution. This was partly achieved by introducing the concept of a
Propagator class. The responsibilities of a Propagator are primarily to describe how an element in the
structure propagates. That is, given some current distribution (known only to the Propagator and the
Current class), a Propagator is able to compute the electric and magnetic fields at any point in space.
Encapsulating the basis function in the Propagator class allows the entire code to be written
independent of the function used to represent the current in a segment of the structure. Changing the
basis function in SNEC requires only the writing of a new Propagator class and supplying the
associated boundary conditions. Thus it is considerably easier to change the basis function in SNEC
than in its FORTRAN counterpart.

The object-oriented version of NEC was completed in 1993. To jllustrate the ease with which the new
program could be modified, the sequential, object-oriented program was adapted to run on a network
of transputers. This task took a total of two weeks to complete.

Transputer technology has severe limitations, the most overbearing being that a transputer machine is
not an all-purpose machine and hence is not widely available (when compared to workstations). Thus
restricting SNEC to a network of transputers was not a good long term prospect for the parallel code.

Currently there are a number of communications libraries that allow processors to communicate with
one another over a local area network. One of these libraries is PVM (Parallel Virtual Machine). This
library allows one to build up a parallel machine using a heterogeneous collection of existing
processors. For example, one could connect a number of SUN 10’s and RISC 6000 machines to form a
fairly powerful paralle] machine.

SNEC was freed from the limitations of the transputer by using PVM to implement the required
communications. The parallel routines used in the PVM implementation are very similar to those used
in the transputer version [2]. Subsequently, SNEC has been adapted to incorporate a hybrid MOM-
UTD method, MBPE, fast iterative solvers and many other features.

The IBM SP2 machine at Southampton University.

The POWER parallel System (SP2) at Southampton University is a 22 processor distributed memory
parallei machine. The first 16 nodes are called ‘thinl’ nodes, and have the following configuration :

Processor 66 MHz Power2
Memory 128 Mbytes

Memory Bus 64 bit

Instruction Cache 32 kbit

Data Cache 64 kbit

Disks Two 2Gbyte SCSI disks

Table 1 : Specifications of nodes 1-16



NITCH, FOURIE, REEVE: RUNNING SUPERNEC ON THE 22 PROCESOR IBM-SP2 101

Nodes 17 to 22 are ‘thin2’ nodes with the following configuration :

Processor 66 MHz Power2
Memory 256 Mbytes

Memory Bus 128 bit

Instruction Cache 32 kbit

Data Cache 64 kbit

Disks Two 2Gbyte SCS] disks

Table 2 : Specifications of nodes 17-22

There is a single log-on node which is used primarily for testing, debugging and submitting jobs to the
machine.

All processors are connected by “IBM high performance S2 adapters”. This communications switch
generates a maximum theoretical point-to-point bandwidth of 40 Mbits/s.

Communication libraries available on the SP2 include MPI (Message passing interface) and PVM.

Generating the SNEC model of the DC-3

SNEC requires that the structure to be modelled be specified in terms of straight wire segments.
Generating such a model for the DC-3 is an exceptionally tedious task when tackled by hand. One of
the tools developed at the University of the Witwatersrand for the conversion of complicated structures
into wire segments is a package called SIG (Structure Interpolation and Gridding package) [7]. The
input to SIG are curves that define the cross section of the structure at various points along its length.
The cross-sections are defined in an ASCII file in a specified format. Given this information and the
frequency at which the structure is to be modelled, SIG produces a valid wire element model suitable
for input to either NEC2 or SNEC. The user defined cross-sections and the model generated by SIG for
the DC-3 at 90 MHz are given in Figure 1 and Figure 2 respectively.

-
—

=
:

i@g\

Figure 1 : The user defined cross-sections for the DC-3.



102 ACES JOURNAL, VOL. 13, NO. 2, JULY 1988, S| CEM & HPC

IIT
108 M |
]

Figure 2 : The top view of the SIG generated model of the DC-3.

Results

The resuits presented in this section discuss the performance of SNEC on the SP2 and compare the far
field patterns obtained from the simulation with measured values. These results will be discussed
separately in the following sections.

Performance on the SP2

The simulation was performed on a network of 1 to 12 processors. The performance of the parallel
code is assessed in terms of its speed up and execution times. The speed up of a paraliel program is
defined as :

simulation time on one processor
simulation time on p processors

speedup =

The first stage in the MoM procedure is that of filling the interaction matrix. When executed in
parallel, each processor is allocated an equal portion of the matrix to fill. Since filling the matrix does
not require any communication between processors, it is expected that the speed up increases Iinearly
with an increase in the number of processors. In actual fact, the speed up increases slightly faster than
linear. The reason for this super-linear speedup could be attributed to the fact that when many
processors are used, each processor has less memory to manipulate and this results in a more efficient
use of cache memory.

The second stage of the MoM procedure is solving the matrix equation, for which SNEC has a number
of different methods. In this study, the parallel performance of two of these techniques are
investigated. The first technique involves factoring the matrix and then performing backward and
forward substitution. This method is a parallel implementation of the matrix solving routines used in
NEC2. The second technique is an iterative solver. The iterative solver is a two stage process that uses
the Sparse Iterative Method (SIM) [5] for the initial iterations, and then, when the rate of convergence
of this solver falls below a pre-set threshold, the bi-conjugate gradient stabilised algorithm is used to
complete the iterative process. The SIM is similar to the banded matrix iteration (BMI) used in the
GEMACS code. A comparison of the two methods is given in [8], whist the rationale behind the
combination of the stationary and non-stationary techniques is detailed in [3].

Performance graphs for each major stage of the MoM solution have been generated.



NITCH, FOURIE, REEVE: RUNNING SUPERNEC ON THE 22 PROCESOR IBM-SP2

7

a2 bt i a
=T 1
E E 1 k-]
a 4 g
v g
22 2
g <]
w 1L w

0_’f i S B B 2 . 5 B _

1 2 3 4 5 6 7 8 9 10 11 12 T 2 3 4 5 6

Number of Processors Number of Processors

Figure 3 : The speed up of the LU Solver.

Figure 3 shows the speed up of the factoring and solving stages of the LU solver. The slow increase in
speed up of this algorithm is attributed to the fact that there is not enough computation for each
processor to amortise the commumication overhead. Increasing the size of the problem on a 12
processor network will result in a more efficient use of the available processing power. The
improvement in speed up could not be demonstrated in this study as the 5500 segment (240Mbyte)
problem is the largest problem that could be simulated on a single processor with the memory

available.

Matrix Multiplication Speed
Up
O=MRNWwWwhboo~dow

1 2 3 456 7 8 9 10 11 12

Number of Processors

Figure 4 : Speed up attained by the matrix multiplication computation.

Most of the time used in the iterative solver is spent during a matrix-vector product operation. The

speed up of the parallel matrix-vector product is given in Figure 4.

-
48]

-
=]

Far Field Speed Up
o N B 3B

1 2 3 4 5 6 7 8 9 10 11 12

‘ Number of Processors

Figure 5 : The speed up of the far ficld computation.

In the simulation of the DC-3, four radiation patterns were computed. Three patterns were one-
dimensional cuts taken in 2° increments. The fourth pattern was a three-dimension radiation pattern

103



104

ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, SI: CEM & HPC

sampled every 4°. The speed up of this computation is fairly consistent with the increase in the number
of processor in the network and is displayed graphically in Figure 5.

8 ‘ 10000
a 7 i 0w
> : | 8 8000
E 6 : 1
g 5L i g so00
@ =
23 g 4000
. 0w =
5 2 5 2000
Et 2
n o_f £ . i < k ‘. ] 0 4 3
i 2 3 4 5 6 7 8 8 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Number of Processors Number of Processors

Figure 6 : The speed up of the simulation and run times on the SP2.

The first graph in Figure 6 shows the speed up of the entire simulation when using the LU solver. The
execution times for the simulation are given in the second graph of this figure. The light-coloured bars
in the second graph correspond to the run-times when using the LU solver, whilst the dark bars depict
the run-times for the iterative solver. The iterative solver was deemed to have converged when the

average tangential electric field error was less than 108

The DC-3 has been simulated on the IBM-SP2 machine at higher frequencies, the performance of the
SP2 is depicted in Table 3.

Frequency Number of Number of Memory Memory per Simulation
(MHz) Segments Processors (Gbytes) Processor Time (hours)
(Mbytes)
148 14608 16 1.7 106 3.7
160 17035 o 21 23 110 53

Table 3 : Run times for larger problems on the SP2 using the LU solver.

Comparison with measured data

The following figures show the theoretical and measured far fields for the DC-3 in the azimuth, pitch
and roll planes. The measured patterns were performed using a 1 in 72 scale model and were obtained
by Fourie, Givati, Clark and Pascoa [6].

=== Theotslical

Measured

Figure 7 : The azimuth-plane radiation pattern of the top fin antenna at 94 MHz.



NITCH, FOURIE, REEVE: RUNNING SUPERNEC ON THE 22 PROCESCR IBM-SP2 105

=== Theorsical

Measurad

=== Theoretical

Meagured

Figure 9 : The side roll radiation pattern of the top fin antenna at 90 MHz

Conclusion

The parailel performance of SNEC on the IBM-SFP2 distributed memory machine has been presented.
The speed up attained by SNEC varied between 1.8 for a two processor network to 7.3 for a 12
processor network. The speed up of the larger networks will approach the number of processors for
larger problems.

The largest problem reported is the simulation of the DC-3 at 160 MHz. Solving this problem on a

sequential machine would require 2.3Gbytes of memory (RAM or hard-disk) and take about 4 days of
computer time to simulate. Distributing the problem onto 21 processors, reduces the memory per

processor requirement to 110 Mbytes and a solution was found in 5.3 hours. This demonstrates the -
effective use of distributed memory and processing power.

This study was done on a specialised parallel processing machine, however the software is not limited
to execution on such machines. Workstations, linked by a local area network maybe used to form a
reasonably powerful parallel processing machine.

References
[1]Burke G.J., Poggio A I, "Nuinerical Electromagnetics Code (NEC2) - Method of



106

ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, SI: CEM & HPC

Moments,” Naval Oceans Systems Center, San Diego, CA Tech Doc 116, 1981.

[2] D. C. Nitch and A. P. C. Fourie. "Adapting the numerical electromagnetics code to run in parallel
on a network of transputers." Applied Computational Electromagnetics Society Journal, 5(2):76--86,
1990.

[3] D. C. Nitch and A. P. C. Fourie. "Parallel Implementation of the Numerical

Electromagnetics Code", Applied Computational Electromagnetics Society Journal, Vol. 9, No. 1.
March 1994, pp 51-57.

[4] D. C. Nitch and A. P. C. Fourie. "A Redesign of NEC2 Using the Object

Oriented Paradigm”, IEEE Antennas and Propagation Society International Symposium, Vol. 2,
Seattle, June 1994, pp 1150-1153.

[5] D. C. Nitch and A. P. C. Fourie. "A Sparse Iterative Method (SIM) for Method of Moments
Calculations”, IEEE Antennas and Propagation Society International Symposium, Vol. 2, Seattle, June
1994, pp 1146-1149.

[6] A. P. C. Fourie, O. Givati, AR. Clark and N. Pascoa. “Measured and Computer Results of Air-to-
Ground communication performance of 2 aircraft at VHF/UHF frequencies”, ANTEM-96 Symposium,
Quebec, Canada, August 1996.

[7] A. P. C. Fourie, D. C. Nitch and O. Givati, “A Complex-Body Structure Interpolation and Gridding
Program (SIG) for NEC”, IEEE Antennas and Propagation Magazine, Vol. 36, No. 3 June 1994, pp 85-
59.

[8] A. P. C. Fourie, D. C, Nitch “Comparing the Sparse Iterative Method (SIM) with the Banded Jacobi
and Conjugate Gradient Techniques”, I[EEE Antennas and Propagation Society International
Symposium, Vol. 2, Seattle, June 1994, pp 1181-1184.



