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Abstract- To reduce the computer memory and time 
of the finite-difference time-domain (FDTD) method 
when the problems are simulated with fine structural 
features, the subgridding scheme that applies higher 
resolution only around critical areas is often used. In 
this paper, a new subgridding scheme is proposed 
which is based on the hybrid implicit-explicit 
finite-difference time-domain (HIE-FDTD) method 
and FDTD algorithm. The field components in fine 
local grids are updated using the HIE-FDTD method, 
and in the coarse main grids conventional FDTD 
method is utilized. Due to the weakly conditional 
stability of the HIE-FDTD method, the technique 
achieves the same time marching step in the whole 
domain as employed in the coarse FDTD scheme, 
and the need for the temporal interpolation of the 
fields in the fine grids is obviated, hence, the hybrid 
HIE-FDTD subgridding scheme is less time 
consuming and easy to implement. Practical 
application of hybrid algorithm in the simulation of 
the shielding effectiveness of an enclosure is 
reported. 
 
Index Terms- FDTD method, HIE-FDTD method, 
subgridding scheme, weakly conditional stability. 
 

I. INTRODUCTION 
 The finite-difference time-domain (FDTD) 
method [1] has been proven to be an effective 
means that provides accurate predictions of field 
behaviors for varieties of electromagnetic 
interaction problems. When there exists a fine 
structural feature compared with other parts in the 
computational domain, the intuitive approach is to 
discretize the whole computational domain with a 
very fine spatial increment in order to achieve 
enough spatial resolution. This will lead to 
excessive use of computation resources including 
computer memory and CPU time. 

To circumvent this problem, the subgridding 
method for local mesh refinement is proposed as 
an efficient tool to enhance the FDTD algorithm 
[2-7].The subgridding method uses a fine mesh 
only in the geometrically critical or electrically 
small areas and a coarse mesh elsewhere. Inside 
the fine grid region, the temporal step size must be 
adjusted to a smaller value in order to meet the 
stability criterion. Therefore, to synchronize the 
timing between the two regions, many time steps 
need to be executed in the fine grid region within 
a time step of the coarse grid region. 

A novel subgridding scheme using the hybrid 
implicit-explicit finite-difference time-domain 
(HIE-FDTD) method [8-12] to process the fine 
grid region is proposed in this article. The 
HIE-FDTD method is weakly conditionally stable, 
such the step size in the fine grid region can be set 
equal to that in the coarse grid region to speed up 
the computation. Temporal interpolation at the 
fine and coarse grids interface is no longer 
necessary. Accuracy of the proposed approach is 
verified by comparing with FDTD method and 
HIE-FDTD using a fine spatial increment for the 
total computational domain, and the memory 
requirements of all these methods are compared. 
Practical application of the hybrid subgridding 
algorithm in the simulation of the shielding 
effectiveness of an enclosure is reported. 

 
II. THEORY 

A. HIE-FDTD method 

Without loss of generality, assume that the fine 
mesh is along the z -direction. Figure 1 shows the 
interface between the fine and coarse grid regions 
and the corresponding field components in each 
region. The ratio between spatial increments in the 
two regions is denoted by m     , where 

z and fz  are the spatial increments along the 

1

1054-4887 © 2011 ACES

ACES JOURNAL, VOL. 26, NO. 1, JANUARY 2011



z -axis in the coarse grid region, and in the fine 
grid region, respectively. The ratio m is set to 3 as 
an illustrating example in Figure 1. zE , xE , 
and yH  represent field components in the 
coarse grid region, and z fE , x fE , and y fH  
represent field components in the fine grid region. 

 

 

   zE    xE  yH   

     z fE  x fE   y fH  

Fig. 1. The field components around the fine and 
coarse grid interface. 
 

The HIE-FDTD scheme is employed in the fine 
grid region to update the field components where n  
and t  are the index and size of time-step, x  
and y  are the spatial increments respectively in 
x - and y -directions,   and   are the 
permittivity and permeability of the surrounding 
media, respectively. The x fE  and y fH  
components in the HIE-FDTD method are expressed 
in equations (1) and (2).  

Updating of the xfE component, as shown in 

eq. (1), needs the unknown yfH  component at 

the same time, thus the xfE component has to be 
updated implicitly. By substituting (2) into (1), the 
equation for xfE field can be represented by 
equation (3). 
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The HIE-FDTD method is weakly conditionally 
stable. The time step size in the HIE-FDTD 
method is determined as follows: 

 

    2 21 1 1 ,t c x y          (4)  

            
here, c is the light velocity in the medium.  

In the coarse grid region, field components are 
updated using Yee’s FDTD expressions, thus, in 
the whole domain, the time step size can be set as 
that in the FDTD scheme, namely,  

 

      2 2 21 1 1 1 .t c x y z      

 

 Temporal synchronization is then easily 
achieved, and only spatial interpolation is needed 
to be taken care of at the interface. 

 
B.  Spatial interpolation at the interface 

Field components in the fine and coarse grid 
regions are updated using different schemes. For 
nodes located near the fine and coarse grid 
interface, proper care must be taken in order to 
avoid the discontinuity in fields which will lead to 
instability of the computation. Suppose the 
interface is set at fi i , ,fj j  and fk k , as 
shown in Figure 1. 

In Figure 1, the coarse and fine grid ratio m is 
equal to 3. At the interface fj j , electric field 

1, ,
2z f f fE i n j k   

 
 ( 0 3n  )is obtained 

from zfE  at each time step through a simple 
interpolation as: 
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The zfE components at the interfaces 

fi i and fj j are calculated as follows: 
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obtained from yfH  at each time step as: 
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The yfH  components are updated by using eq. 
(2). 

The flowchart of the algorithm procedure is 
shown in Figure 2. 

It should be noted that, the scheme above is 
only suitable to the question with fine mesh along 
z-direction. If the fine mesh is along y (or/and 
x)-direction, the scheme can be derived by 
following the same analysis. 

III. SIMULATION RESULTS 
To demonstrate the accuracy and efficiency of the 
proposed subgridding method, a simulation of the 
shielding effectiveness of an enclosure is 
employed. The geometric configuration of the 
enclosure is shown in Figure 3. The length, width, 
and height of the enclosure are 30 cm, 30 cm, and 
12 cm, respectively. A thin slot is cut on the front 
side of the enclosure. The length and width of the 
slot are 20 cm and 3 cm. A uniform plane 
electromagnetic wave, polarized in the ẑ direction 

and traveling along the ŷ direction, incident on 
the aperture. The time dependence of the 
excitation function is as follows, 
 

2
0( ) exp[ ( ) ],z

inE t t t          (8)  
          

where   and 0t  are constants. Here, we 
choose  =0.31 1019 s-2, and 0t =2.0 10-9 s. In 
such a case, the highest frequency of interest is 1 
GHz. 

To model the slot precisely, a fine mesh must be 
utilized in the region around the slot, as shown in 
Figure 4. Here, we choose x y    3 cm., 

z  2.25cm, fz  0.6cm. To satisfy the 
stability condition of the FDTD algorithm, the 
time-step size for the FDTD in the fine grid region 
is t  19.24 ps. To improve the computation 
efficiency, we utilize the HIE-FDTD method in 
the fine grid region, thus, the step size in the fine 
grid region can be set equal to that in the coarse 
grid region, that is, t  51.45 ps. Six perfectly 
matched layers are used to terminate all six sides 
of the lattice. 

Applying the new subgridding scheme to 
compute the electric field component zE  and the 
shielding effectiveness (SE) at the central point of 
the enclosure, the results are shown in Figures 5 
and 6. For the sake of comparison, we also present 
the results at the same position obtained by using 
the FDTD method and the HIE-FDTD method, 
respectively. In the FDTD method and the 
HIE-FDTD method, only the fine space increment 
is used. The time step sizes in the FDTD, 
HIE-FDTD, and sungridding schemes are 19.24 
ps, 70.71 ps, and 51.45 ps, respectively. It can be 
seen from Figures 5 and 6 that, the results 
calculated by using these three methods agree well 
with each other, which shows that the subgidding 
scheme has high accuracy. 
The computation time and the memory 
requirements of the FDTD, HIE-FDTD, and 
subgridding scheme in this simulation are shown 
in Table 1. Apparently, the proposed subgridding 
scheme consumes less computer memory and 
much less computation time compared to the 
conventional FDTD method and HIE-FDTD 
method which discretize the whole computation 
domain with a fine grid. 
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Fig. 2. The flowchart of the subgridding scheme. 

 

 
Fig. 3. Geometric configuration of the numerical 
simulation. 

 

 
Fig. 4. Spatial increments of the front side of the 
enclosure. 
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Fig. 5. Comparison of zE  component calculated 
by different methods. 
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Fig. 6. Comparison of SE calculated by different 
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Table 1: The computation time and the memory 
requirements of three methods 
Sample FDTD HIE-FDTD Subgridding 

Scheme 
 

time (s) 1072.92 647.74 353.47 
Memory 
(Mb) 

16.85 18.30 15.14 

 
To demonstrate the accuracy of the proposed 

subgridding method further, the relationship 
between the relative error and the grid size ratio m 
is shown in Figure 7. For the sake of comparison, 
the relative error of hybrid alternating direction 
implicit (ADI)-FDTD subgridding scheme [5] is 
also shown in this figure. Relative error is defined 
as, 
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here,  '
zE t is the result calculated by the 

proposed subgridding method or hybrid 
ADI-FDTD subgridding scheme;  zE t is the 
result calculated by the FDTD method; T is the 
total time steps.  

It can be seen from Figure 7 that, as the 
increase of the ratio m, the errors both of the 
proposed subgridding method and the hybrid 
ADI-FDTD subgridding scheme are decreased, 
and the accuracy of the proposed subgridding 
method is higher than that of hybrid ADI-FDTD  
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Fig. 7. The relationship between the error and the 
grid size ratio. 

 
subgridding scheme. It is due to that the accuracy 
of HIE-FDTD method is over the ADI-FDTD 
method [9]. 
 

IV. CONCLUSION 
A novel subgridding scheme combining the 

HIE-FDTD method and the conventional FDTD 
method is presented. The HIE-FDTD scheme is 
used for the subgridding regions and the FDTD 
scheme is employed for the coarse grid regions. 
With the weakly conditional stability of the 
HIE-FDTD algorithm, the subgridding scheme 
achieves the same time-step size in the entire 
computational domain. Hence, this technique is 
very simple to implement and saves considerable 
simulation time. The hybrid HIE-FDTD 
subgridding scheme can be used to all those cases 
where the conventional subgridding FDTD 
method is applicable, but with less computer 
memory and much less computation time. 
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