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Abstract. Three methods for the analysis of frequency-dependent
resistances and inductances of multiconductor transmission lines are outlined
and compared. The first method comes from power-engineering applications, and
it is based on a numerical solution of an integral equation for the
distribution of the conductor volume currents. The second method is based on
the perturbation technique. The third method comes from high-frequency
applications, and it is based on the principle of equivalent surface electric
and magnetic currents. ’

1. INTRODUCTION

We consider a multiconductor transmission line, consisting of (N+1)} infinitely
long cylindrical conductors of arbitrary cross sections (Figure 1). In the
circuit-theory analysis of the response of such a line, usually the quasi-TEM
approach is applied [Djordjevié¢ et al., 1987). Thereby, one of the conductors
is assumed to be the reference conductor ("ground"), for example conductor
#(N+1), and the other N conductors are referred to as the signal conductors.
In the circuit theory, the state of the line is represented in terms of
currents of the signal conductors and voltages between the signal conductors
and the reference conductor, ‘

The circuit-theory analysis starts from the primary parameters of the line.
For a multiconductor 1line, these parameters are the matrix [B’] of
electrostatic-induction coefficients per unit length (often improperly
referred to as the the capacitance matrix), the matrix [G’] of conductances
per unit length, the matrix [L‘] of inductances per unit length and the matrix
[R"] of resistances per unit length. The dimensions of all these four matrices
are ¥ by N. Following the quasi-TEM approach, these matrices are evaluated
from quasi-static analyses. More precisely, the matrices [B’] and [G'] are
evaluated simultaneocusly from one electrostatic analysis of a two-dimensional
system, in which the dielectric permittivity is taken to be complex
[Djordjevié¢ et al., 1989]. The dlelectric permittivities vary with frequency,
and so do the matrices [B’] and {G']. In most practical cases, the relative
variations of the matrix [B’] are very small, but they must be included in
order to obtaln a causal response in the time domain [Arabl et al., 1991].
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Figure 1. Sketch of a multiconductor transmission line (N=2).

The matrices [L‘] and [R’] are evaluated from another analysis. In many cases,
the results are required only for high frequencies, when the skin effect is
fully developed. In those cases, the matrix [L’] is computed by inverting the
matrix [B;] which is evaluated when the transmission line dielectrics are

replaced by vacuum, and the matrix [R’] 1is thereby evaluated by the
perturbation method. The resulting matrix [L’] is frequency independent, while
the matrix [R’] 1s proportional to ¥f, where f is the operating frequency.
However, even in this case, a correction to the matrix ([L’] is required in
order to obtain a causal response, which consists in adding [R’]/w (where
w=2nf is the angular frequency) to the matrix [L’}.

However, 1f a broader frequency range is of interest, the frequency varlations
of the matrices [L’] and [R’] are more complicated [Djordjevi¢ and Sarkar,
1994]. At the low-frequency end (towards the d.c. case), the current is
practically uniformly distributed over a conductor cross section, there exist
effects of the internal inductance, and the resistance tends to the d.c.
value. In the intermediate region between the low and high frequencies, the
edge and proximity effects take part in addition to the skin effect. These
variations may be important not only for broadband signals 1In ordinary
transmission lines, but also for integrated circuits, where the conductor
thickness can be very small (e.g., thin-films), so that the skin effect need
not be developed even in the gligahertz region.

The variations of the matrices [L’) and [R‘] in a broad frequency range can be
evaluated using several numerical techniques. We will concentrate our
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attention to three of them. All of them treat the multiconductor transmission
line of Figure 1 as a two-dimensional system, in which only axial currents are
excited. For simplicity, we will assume the medium to be nonmagnetic
everywhere.

The first technique 1ls based on formulating an Iintegral equation for the
volume current distribution within the conductors, and it will be referred to
as the volume-current method. This method has been successfully used for quite
some time in solutlion of wvarlous power-engineering problems involving eddy
currents [Popovié and Popovié, 1972]. The second method 1is a high-frequency
approximation based on an electrostatic analysis with the perturbation
technique [Djordjevi¢ et al., 1989],. and it will be referred to as the
perturbation method. The third method is a high-frequency technique, which is
based on the equivalence theorems and the concept of equivalent surface
currents, and it will be referred to as the surface-current method [Djordjevié¢
et al., 1985, Djordlevié and Sarkar, 1986)]. These three methods are briefly
presented in Sections 2, 3 and 4, respectively, and in Section 5 a comparison
between these techniques is given and 1llustrated by numerical examples.
Thereby, the accuracy, ease of programming, cpu time and applicable frequency
range of each method are evaluated. Of course, in addition to the three
presented techniques there exist a varliety of other methods for the analysis
of multiconductor transmission lines which include the conductor losses
[Faraji-Dana and Chow, 1990, Kiang, 1991]. The most sophisticated of these
methods even take into account the dispersion effects of inhomogeneous
dielectrics.

For all three technlques, each conductor of Figure 1 is assumed tc be made of
a linear homogeneous nonmagnetic material of a finite conductivity

(01....,0N+1). A time-harmonic regime is assumed, of an angular frequency w.

For each conductor the condition w»wec is assumed to be fulfilled (where ec is

the conductor permittivity), so that each conductor can be characterized by
its complex permittivity ee=-J0/w. The conductors are placed in a linear

homogeneous dielectric, of parameters € and K, A Cartesian coordinate system

is associated with the transmission line, where the z-axis is parallel to the
conductor axis.

2. VOLUME-CURRENT METHOD

This technique has been applied in the solution of power-engineering problems
of analyzing various buses [Popovié¢ and Popovié, 1972]. It 1s based on
formulating an integral equation for the distribution of the current within
the conductor volume, and solving this equation using the method of moments
[Harrington, 1993].

We assume that the excitation of the gstem of FigureA 1 is modeled by an
impressed (known) axial electric field (E,=E 4 - where u_ is the unit vector

of the 2z-direction), which Iis uniform over the cross section of each
conductor, as well as in the z-direction. This field actually replaces the
axlal component of the electric field produced by the transmission-line
charges, as these charges are not included into the medel {Djordjevi¢ et al.,
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1985]. As a response to this f%gld, axial volume currents are induced in the
conductors. Their density ( =Jzuz) depends only on the transverse coordinates,

and not on z (two-dimensional case), and there are no charges assoclated with
this current. At each point of a conductor, the current density is related to
the electric field by

3=o(i!+z‘1) , (1)

where E is the electric field produced by the conductor currents, and it can
be expressed in terms of the magnetlc vector-potentlal (3) as

E= -jwﬁ . (2)

Assuming the medium to be nonmagnetic everywhere (i.e., p=po). and neglecting

retardation in the dielectric in which the array of conductors 1is located
(which is a valid assumption in power-engineering problems), the magnetic
vector-potentlial 1s related to the currents, in the two-dimensional case, as

"
1=—§Ijlog(r) ds , (3)
S

where r is the distance between the source and the field points, and S denotes
the cross section of all conductors, subject to the condition that the total
current of the (N+1) conductors is zero,

IJ-d? =0. (4)
s

Equations (1-3) result in an integral equation for the =z-~component of the
volume-current density vector (Jz).

M Jz(x,y)
-Jjw T I Jz(x’,y') log(r) dx’'dy’ +
s

which is valid for any point within any conductor of the line, where x and y
are transverse coordinates. For convenience, the coordinates of the source

point are dencted by primes, and

= Eiz(x’y) , (5)

r = Yix-x" )2+ (y-y )% . (6)

Equation (5) can be solved numerlcally, using the method of moments. The
simplest cholce is the pulse approximation for the current distribution. (More
sophisticated approximations can involve entire-domain expansion functions, or
even inclusion of skin-effect terms.)} To that purpose, we divide the cross
section of each conductor 1In a number of rectangular cells, and assume the
current to be unifermly distributed over each cell. We utilize here equal-size
cells, but a better policy would be to take cells to be progressively smaller
golng towards the conductor surfaces ln order to obtain results valid 1n a
broader frequency range [Dinh et al., 1990]. The simplest choice for testing
is the point-matching method, with the matching points located at the cell
centroids. The resulting integrals can be solved analytically. Having solved
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for the current distribution, the total current of each conductor can be
easily found.

The matrices [R’] and [L’] can be evaluated in the following way [Djordjevié
and Sarkar, 1986]. In order to properly model a TEM transmission line, the
condition (4) must be fulfilled, which can be rewritten as

N+1
I =0, (7)

m=1
where the reference directions for conductor currents (Im) coincide with the

z-axis of Figure 1. The voltage drop per unit length between the signal
conductor #m and the reference conductor is

dar

m(N+1) _ _

az = "Fim T Eyuenyg) - (8)
From telegraphers’ equatlions we have
AWVl (ze1111 = ~(R 1wl D) 11T, (9)

where [V] 1s the vector of voltages between the signal conductors and the
reference conductor, [I] is the vector of signal conductor currents, and [Z’]
is the matrix of line impedances per unit length. We introduce the augmented

vector of currents of currents of all (N+1) conductors, [Ia}, and the vector
[Ei] of impressed electric fields in the (N+1) conductors. The system being

linear, the following relation must be valid:
(%1 = (TE,] (10)

where [T] is a square matrix ({(N+1) by (N+1)). The matrix element Tmn

numerically equals the current Im when E, =1 V/m, and all the other impressed

inz
fields are zero. We now take n=1,...,(N+1), solve equation (5) and hence
evaluate the elements of the matrix [T]. Note that this procedure has no
physical interpretation if the volume-current method is used, because each
time the currents are evaluated, equation (4) is violated. Nevertheless, this
numerical procedure yields correct final results for the matrices [R‘] and
[L’]. From (10} we have

[E,] = (2231111 , (11)

where [2%/] = ['I‘]-1 is the augmented matrix of impedances per unit length.
From equations (7-9) and (11) we can express the elements of the matrix [Z’]

in terms of the elements of the matrix [Za'] as

= 72 _ 72 a

I — I al‘
zmn mn m(N+1) z(N+1)n *2

(N+1) (N+1) * ®P=L-- N (12)
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3. PERTURBATION METHOD

This is a well-known high~-frequency approximation [Harrington, 1961}, valid
when the skin-effect is fully pronounced. In the analysis, the conductors are
first assumed to be perfect, and the tangential magnetic field at the
conductor surface ( tan) is evaluated. Then the conductors are assumed to have

small losses, so that the magnetic field at the surface is neglliglbly affected
by the presence of losses. The surface density of the power loss in the
conductors is evaluated as

ch 7 2
as Rsl tanl ! (13)

where

Rs = /npof/c (14)

is the surface resistance of the conductor. In the quasi-static analysis of
transmission lines, the presence of inhomogeneous (nonmagnetic) dielectrics 1s
assumed to have no influence on the distribution of the currents and magnetic
field. Hence, the magnetic field is evaluated for the case when the dielectric
is taken to be vacuum everywhere [Djordjevi¢ et al., 1989], which is reduced
to solving a two-dimenslonal electrostatic problem. Thls solution is based on
substituting the conductors by their surface free charges (of density ps),

located in vacuum. The current density can be expressed in terms of the charge
density as J=cops, where co=1/Vcouo. Setting the electric scalar-potential V

at a conductor surface equal to the correspondlng conductor potentlal, the
following integral equation is obtalned for the charge density

1
2ne
o

I Py log(r) ds =V , (15)
s

where s denotes the contours of all conductors. Similarly to equation (3),
equation (15) is valid only if the total charge of the system is zero, i.e.,

I Pg ds = 0 ., (16)
s

The integral equation (16) 1s sclved numerically, using the method of moments.
The simplest approximation for the charge distribution are pulses (i.e., a
plecewlse-constant approximation), with the point-matching technique. The
condition (16) can be forced if the last point-matching equation is subtracted
from all the previous equations, and substituted by (16). The numerical
accuracy 1s improved if the pulses are of nonuniform widths, being smaller in
the regions where the charge density varies rapldly (such as near edges or
wedges). Another improvement can be achieved by using Galerkin's technique
[Harrington, 1993] instead of the point-matching. In any case, the resulting
integrals can be evaluated expllicitly, resulting In a very efficient technique
for the analysis of arbitrary structures [Djordjevié et al., 1989].

Having evaluated the conductor charge densitles for a set of independent
driving conditions, the matrix of electrostatic Induction ceefflicients [B;]
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can be calculated, and the external inductance matrix of the multiconductor
transmission line is related to this matrix by

’ _1 -1
[Le] =3 [Bo] . (17)
o]

The matrix [R’] is calculated from the power loss per unit length of the line,
evaluated for various driving conditions of the 1line. From the boundary
conditions for a perfect conductor, the density of the surface currents (78)

has the same magnitude as the intensity of the tangential magnetic field, so
that the loss power per unit length of the transmission line is

P’ = I R Jz dl . (18)
c s s
s

The elements of the matrix [R’] are evaluated from the power Pé when one

signal conductor carries a current at a time, and when two signal conductors
carry currents at a time, while the currents of other conductors 1s zero. The
matrix [R‘] varles with frequency as VFf due to equation (14). (In many
practical cases, due to the surface roughness of the conductors, the measured
conductor losses can be substantially higher than theoretically predicted for
a smooth surface.) A more careful insight into the perturbation approach
results in a reactive power in the conductors, in addition to the loss power
(these two powers are equal in magnitude). This amounts to the Iinternal
inductance of the conductors which can be evaluated as

[Li] = [R']/w , (19)

and which should be added to [L;] to obtain [L°].

3. SURFACE-CURRENT METHOD

The baslc idea of this method is to use equivalence theorems [Harrington,
1961] to break the system under considerations into a number of subsystems,
each of them being filled with a homogeneous medium. To achieve this, a layer
of surface electric currents (of density s’ which are in our case axial), and

a layer of surface magnetic currents (of density ﬁs’ which are in our case

transverse) must be placed on the conductor surfaces, wlth the objective to
produce a zero total fleld in a region. The flrst subsystem consists of the
region external to the conductors, with zero fields in the regions occupled by
the conductors (external subsystem). The medium in the latter regions can be
substituted by that of the external region, thus homogenizing the medium. The
second subsystem (the first internal subsystem) consist of the internal reglon
of the conductor #1, with zerc field in the remaining space, which can be
filled by the same medium of which conductor #1 1s made, etc. [Djordjevié et
al., 1985]. For a transmission line of (N+1) conductors, the number of
internal subsystems is (N+1). The homogenization of the medium is required in
order to use a simple form of Green’s functions in the equations for the
potentials. For this technique we use retarded potentials, where Green’'s
function for the two-dimensional case for the external subsystem is
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gr) = - 3P ey (20)

(2)

where H “° 1s Hankel’s functlon of the second kind and order zero, and k=weu.

In the limiting quasli-static case Green’s function (20) tends to - %E log(kr),
thus yielding the kernels of equations (5) and (15). For an internal subsystem
Green’s function is

g(r) = 2 lker(|z|r) + J kei(|z|D)] | (21)

where ker and kei are Kelvin's functions, and y=Yjwuc is the propagation
coefficlent in the conductor.

The fields can be expressed in terms of the potentials as

E = -jwz -1 curl B + B . (22)
€ i

H=-Jof - grad v_+ % curl 4+ 8, (23)

where F is the electric vector-potential, Vm the magnetic scalar-potential,
and Ei and ﬁi impressed fields. (The -grad V term is missing in (22) because

we agalin assume the electric currents to be z-directed, with no =z-variation.)
The potentials are given by

2=y I J_ gtr) as (24)
s

P=e¢ I A g(r) ds (25)
s

v, = % J Pns glr) ds , (26)
s

where

= J
Pus = 5 divs Hs (27)

is the density of surface magnetic charges. In our case H=p everywhere.

In order to have a zero field within a region, we impose the boundary
conditions that the tangential component of the electric field for the
external subsystem is zero, i.e.,

E, =0, (28)

which leads to an electric-field integral equation (EFIE) for the equivalent
surface currents. We also impose the boundary condition that the tangential
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component of the magnetic field for each internal subsystem is zero, 1i.e.,
A =0, (29)

which leads to magnetic-field integral equations (MFIE). As in the volume-
current method, the impressed electric field, 1’ i1s taken to be unliform over
the cross section of each conductor, and this field replaces the fleld
actually produces by the electric charges. This field is present only in the
external subsystem. When the fields are expressed lIn terms of the potentials,
and the potentials in terms of the equivalent surface sources, using equations
(20-27), a set of coupled Iintegral equations is obtained for s and s’

An approximate solution of these equations is obtained using the simplest
combination of pulse expansion functlons and point-matching. Line magnetic
charges are associated with this approximation of the magnetic currents. The
pulses are taken to have nonuniform widths (narrower near wedges), and the
matching points are located at the pulse midpoints, at the appropriate faces
of the boundary surfaces (within regions occupied by conductors for the
external subsystem, and outside the conductors for the internal subsystems).
Taking into account

grad g(r) = g% Gr . (30)

where ﬁr is the unit vector 1n the radial direction, for the external

subsystem we have for the field components produced by an expansion function
{carrying uniform surface currents of densities js and s)’

-jwd = -jC 35 I (- %) Héz)(kr) d(ks) , (31)
s

-1 curl F =¥ «x J J H(Z)(kr) §  diks) s (32)
€ S 4 "o r
s

vhere ¢=Vli/e is the wave impedance of the dlelectric. For an Internal
subsystem we have similarly

-juF = - - %E (ker(|¥|r) + J kei(|y]|r)] d(]7]|s) , (33)
1<l 5
~ler12=-13 I 1 [ker’ (|¥|r) + J kei’ (|¥|r)] & a(ly]s) (34)
€ s * | Zn 7 r ’
5
j A2
—grad V_ = -|H_| [ 2 lker’ (J¥|r) + J kei’ (|¥|r) @ ] , (35)
m s r| _
2n| | r=r

1
where ry and r, are distances between the end points of a pulse and the field
point, and {=/jwp/oc is the wave conductor impedance.
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The above system is solved for a set of independent driving conditions,
following a similar procedure as for the volume-current method. Hereby, the
current of a conductor is obtalined by integrating the surface-current density
c around the conductor circumference. The matrices [R’] and [L‘] can now be

evaluated from equations (9-12).

Figure 2. Sketch of a microstrip line.

5. EXAMPLES

The first example is the microstrip line, sketched in Figure 2, of dimensions
w=0.2 mm, h=0.1 mm, g=2 mm, and t=0.01 mm. The conductors are made of copper,
of conductivity ¢=56 MS/m. Shown in Table 1 are the resistance per unit length
and the inductance per unit length of this line, versus frequency, obtalined by
the three techniques presented in this paper. For the volume-current method,
the conductors were uniformly divided into pulses (rectangles): nw=10 along w,

ng=40 along g and nt=3 along t, resulting in the total of 150 unknowns. For

the perturbation technique, the numbers of nonuniformly distributed pulses
were nw=25, nt=3 and ng=85 along the corresponding lengths, resulting 1ln a

total of 141 unknowns (the thickness of the ground plane was taken to be
zero). For the surface-current method, the number of nonuniformly distributed
pulses were nw=25, ng=50 and nt=3, respectively, resulting in a total of 324

unknowns (for electric and magnetic currents).

Table 1 illustrates some features of the three techniques. The volume-current
method yields excellent results at low frequencies. For example, for f=10 kHz,
the numerical results are L =440.5 nH/m and R’=9.821 m, while the
analytically calculated values [Djord jevié and Sarkar, 1993] are
L’=439.27 nH/m and R’=9.821 f&/m. The surface-current method yields a smaller
accuracy, especially as the frequency becomes very low. The accuracy can be
improved at the expense of taking more pulses. The results of the perturbation
method for low frequencies are a large underestimate of R’ and an overestlmate
of L, and they are practically useless.
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In the medium-frequency region (300 kHz-50 MHz) the agreement between the
volume—-current and surface-current methods is excellent, while the results of
the perturbation method are still poor. Above about 100 MHz, in the
high-frequency (skin-effect) region, the results for R’ obtained by the
volume-current method tend to saturate, instead of increasing as v¥. This is
due to the pulse approximation for the current distributlion, as there must
always be a current in the outermost layer of pulses. In the real systen,
however, the thickness of the current layer constantly decreases with
increasing the frequency. The results for R’ obtalned by the surface-current
method follow very well the Vf behavior and they are facein a good agreement
with the perturbation method. However, at very high freguencies (above about
10 GHz) R’ obtained by the surface-current method starts Iincreasing much
faster. This 1s a consequence of radiation. Namely, the structure behaves like
a two-dimensional magnetic dipole, the radlatlon reslstance of which Iis

proportional to f3 [Djordjevi¢ et al., 1985]. There would be no radiation
effects in the numerical model if the quasi-static kernel of equation (5) were
used instead of (20).

Table 1. Primary parameters of microstrip line sketched in Figure 2.

Volume-current Perturbation |Surface-current
f [Hz] method method method
R’ L’ R’ L’ R’ L’
[Q/m] |([nH/m] [&/m] |[nH/m] [Q/m] | [nH/m)
10.00 k 9.821( 440.5 0.131|2365. 9,630| 431.9
17.78 k 9,822 440.5 0.174(1845. 9,630 433.1
31.62 k 9.822( 440.5 0.232(1456. 9.630| 434.2
56.23 k 9.823| 440.4 0.310(1163.0 9.631[ 435.3|
100.0 k 9,826 440.2 0.413( 943.8 9.633]| 436.1
177.8 k 9,835 439.3 0.551( 779.3 9.642| 436.2
316.2 k 9.862| 436.7 0.735] 656.0 9.669| 434.4
562.3 k 9,942 429.3 0.980| 563.6 9.749| 427.4}.
1.000 M 10.14 411.6 1.306| 494.2 9.946| 409.6
1.778 M 10. 48 382.5 1.742| 442.2 10.29 380.2
3.162 M 10.87 353.3 2.323| 403.2 10.68 350.6
5.623 M 11.23 333.7 3.098( 374.0 11.05 330.9
10,00 M 11.59 322.9 4.131| 352.0 11.43 320.2
17.78 M 12.07 316.3 5.509( 335.6 11.94 313.6
31.62 M 12.67 311.8 7.346| 333.3 12.69 308.8
56.23 M 13. 40 308.7 9.796( 314.0 13. 80 305.1
100.0 M 14. 42 306.7 13.06 307.1 15.61 302.4
177.8 M 16.13 305.1 17. 42 301.9 18.70 299.7
316.2 M 18.72 303.5 23.23 298.0 23.54 297.2
562.3 M 22.14 302.3 30.98 295.1 30.80 294.9
1.000 G 26.42 301.3 41.31 292.9 41.54 293.0
1.778 G 30.27 300.5 55.09 291.2 55.64 291.3
3.162 G 32.38 300.1 73.46 290.0 73.73 290.1
5.623 G 33.24 300.0 97.96 289.1 98.1 289.3
10.00 G 33.52 299.9( 130.6 288.4¢ 133.7 288.7
17.78 G 33.61 299.9| 174.2 287.9| 199.2 288.7
31.62 G 33.64 299,9( 232.3 287.5| 387.5 289.5

The second example are two coupled microstrip lines, sketched in Figure 3, of
dimensions w=0.6 mn, s=0.02 mm, g=2 mm, bh=0.1 mm, t=0.02 mm, and the
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conductors are made of copper. Given in Table 2 are the elements of the
matrices [R’] and ([L’] for several frequencies, as computed by the three
techniques. For comparison, the exact d.c. values for the elements of the

’ - - L - L
matrix [R’] are R11 R22 1.935 /m and R12 R21 0.446 Q’m. This example confirms

the conclusions drawn from the previous example about the behavior of the
results of the three methods.

W S W

}
il i
Eé.
((:) 7
l

Figure 3. Sketch of two coupled microstrip lines,

Table 2. Primary parameters of coupled microstrip lines sketched in Figure 3.

Volume—-current Perturbation Surface-current
mehod mehod nehod
Fl Y ra -—f 7 Fi - ’ -f 7 FJ — Fl —_f 7
£ Hz]  |Ri17Raa|L117022 | Ry =Ro5 (L1170, (R 7R25 [ L1151,
r - r -] ! r - r -] 7 r - I —F 7
R12™Ro1 | L1202 | R1™ 21{L127L24 Ri2=Ro L12'L21
[Q/m] | [nH/m] [2/m] | (nd/m] [€/m] | (nH/m]
10.00 k | 1-935 [ 253.9 [70.074 |1309: 1.898 | 247.8
: 0.446 | -26.4 [~0.008 | -90.7 | 0.459 | -24.3
100.0 k | 1-945 | 250.7 | 0.235 | 5017 [ 1.908 | 247.9
' 0.440 | -23.9 |-0.025 -3.7 | 0.451 | -23.1
1. 000 M| 2-183 | 187.1 [ 0.742 [ 2463 | 2. 149 | 184.8
. 0.316 15.6 |-0.080 23.9 | 0.327 16.5
10.00 M | 2576 | 156.2 [72.347 | 165.6 | 2.694 | 152.8
' 0.161 30.2 [-0.253 32.6 | 0.075 11.9
100.0 M 4,653 | 149.1 | 7.422 | 140.0 | 6.829 | 139.7
. 0.912 29.9 |-0.800 35.3 |-0.263 35.4
1.000 G| 7-576 | 136.0 [23.47 131.9 |23.28 131.9
' 1.437 29.0 [-2.53 36.2 [-2.25 36.1
10.00 G | 7-748 | 145.9 [74.22 129.24 [77.19 122.9
: 1.457 29.0 |-8.00 36.5 |-1.80 36. 4

Regarding the complexity of the programing, the volume-current method 1isg
simplest, the perturbation method is somewhat more complicated, and the
surface-current method is much more complicated than the other two methods.
Regarding the c.p.u. time, the perturbation technique is faster than the other
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two methods even if only one frequency is considered, because for a given
accuracy (in the high-frequency region, where this method is vallid) it usually
requires much less unknowns than the other two methods, and it involves only
real arithmetics. In addlition, results for various frequencies can thereafter
be obtained even by hand calculations. The c.p.u. times of the volume-current
and surface-current methods are comparable in most cases.

6. CONCLUSION

Three numerical methods for analysis the frequency-dependent matrices of
resistances and inductances per unit length of multiconductor transmission
lines are presented and compared. The overall performance of the
volume~current method is best at low and medium frequencles (when the skin
effect 1s not yet developed)}, but it can be extended into the skin effect
region using nonuniform segmentatlon, adapted to the skin depth at the highest
operating frequency. For the frequencies deep in the skin-effect region, the
perturbation technique 1s superior. The surface-current method is the only one
that covers the full frequency range, at the expense of a more complex
programing than the other two techniques, and a somewhat reduced accuracy at
very low frequencies. Therefeore, a combination of the volume-current method
and the perturbation method seems to be the best cholce for most applications,
with a particular caution taken to obtain a good overlap of results at the
beginning of the high-frequency region (when the skin depth is of the order of
the conductor thickness). However, the surface-current method ls indispensable
for an independent check of the results in this transition region.
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