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Abstract ─ The present paper treats with the latest 
linear iterative solver IDR(s) method and its va-
riants proposed by P. Sonneveld and M. van Gij-
zen. We derive preconditioned algorithms of the 
solvers based on right preconditioning and list 
them. The solvers are numerically tested in terms 
of convergence and accuracy for the computation 
of electromagnetic wave scattering from over 104 

dielectric cylinders. Consequently, minimization 
schemes for residual vectors refine not only con-
vergence but also accuracy for the original IDR(s) 
method. However, a spurious convergence may be 
confirmed and its influence is 1 or 2 digit error 
independently of parameter s. 
 
Index Terms ─ Boundary element method, elec-
tromagnetic multiple scattering, IDR(s) method.  
 

I. INTRODUCTION 
The aim of the authors' work is to simulate 

electromagnetic (EM) wave scattering from a me-
dium composed of several kinds of objects in 
shape, size, and material. As a basic issue, we try 
to develop fast techniques for the computation by 
means of the boundary element method (BEM) 
[1]. In the BEM computation, the most time-
consuming part rises from solving the dense linear 
system of equations followed by the discretization 

of boundary integral equations. Our previous work 
presented that both the computational and memory 
complexities for the multiplication of a vector by 
the coefficient matrix can be drastically reduced 
by a wideband fast multipole algorithm [2]. Then, 
we use an iterative solver based on the Krylov 
subspace method [3] because the operation of ma-
trix-vector multiplication is in its algorithm. The 
propositions of high performance iterative solvers 
and preconditionings are important to the fast 
computation today. 

The authors have used a generalized minimal 
residual method with restart process (GMRES(m) 
method [4]) for solving the linear system of equa-
tions [5]. A restart cycle m should be chosen a 
very large value for high convergence but it needs 
much memory space. P. Sonneveld and M. van 
Gijzen proposed the IDR(s) method which belongs 
to the Krylov subspace method [6]. “IDR” is an 
abbreviation of “Induced Dimension Reduction”.  
The authors' numerical experiments revealed that 
the IDR(s) method was better than the GMRES(m) 
method in terms of convergence and memory effi-
ciency for the BEM analyses of electromagnetic 
wave scattering from many dielectric cylinders. As 
the parameter s of the IDR(s) method is larger, 
however, convergence is more improved but the 
accuracy deteriorates drastically [7].  
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Such a prejudicial phenomenon concerning 

accuracy is called “a spurious convergence” in this 
paper. The authors managed the spurious conver-
gence by using Sleijpen and van der Vorst's con-
vergence refinement method [8]. This technique is 
very simple and easy to implement but is not com-
plete solution. Sakurai et al. proposed an auto cor-
rected (AC) IDR(s) method that perfectly dis-
solves the problem of the spurious convergence 
[9]. In this method, however, a computation of 
matrix-vector multiplication may be added for one 
iteration. Then the net computation time may be-
come much longer for the AC-IDR(s) method than 
for the original one in solving a large scale dense 
linear system of equations. On the other hand, 
Sonneveld and van Gijzen modified the algorithm 
and proposed two variants of the IDR(s) method in 
order to expedite convergence [10, 11]. 

This paper investigates the performance of the 
variant IDR(s) methods for the computation of EM 
wave scattering from many dielectric cylinders by 
means of the BEM. We solve the linear system of 
equations of order 105 by the IDR(s) method and 
its variants and compare their convergence and 
accuracy. After this introductory Section I, Section 
II presents two-dimensional boundary integral eq-
uations and discretization of them. We explain the 
structures of the coefficient matrix and the un-
known and right-hand side vectors. Section III 
outlines the variant IDR(s) methods with a right 
preconditioning. Performance evaluations are done 
in Section IV. Finally, Section V summarizes con-
clusions of this study. Throughout this paper, e jt 
time convention is used and suppressed. 
 

II. FORMULATION 
Let us consider the two-dimensional problem 

of EM wave scattering by N infinitely long cylin-
ders in a vacuum. The relative permittivity and 
permeability of the ith cylinder are r

(i) and r
(i), 

respectively. The wave numbers of the vacuum 
and the ith cylinder are represented by k0 

and )()(
0

i
r

i
ri kk  , respectively. Each axis of 

the cylinders is parallel to the z-axis of the cylin-

drical coordinate system. We formulate this prob-
lem in the electrical field integral equations 
(EFIEs) for TM wave. The z-components of un-
known electric fields Ez and their normal deriva-
tives nEz   are given by Eqs. (1) and (2). Here, 

the Ci is the boundary of the ith cylinder, and i 
and 'i are the observation and integration points 
on Ci, respectively. The H0

(2) is the zero order 
Hankel function of the second kind, and in  is 

the outward normal derivative on Ci. The Ez
inc is 

an incident wave. 
The integral equations can be discretized 

through the BEM [1]. We divide each boundary 
into Mi boundary elements and choose the rectan-
gular pulse function as a basis function. Using the 
point matching method, we obtain a dense linear 
system of L equations Ax = b, where L = 2(M1 + 
M2 + … + MN). The linear system is composed of 
blocks and subvectors: 

 
 
 
 
                                                                             (3) 
 
 
 
 
                                                                             (4) 
 
                                                                             (5) 

 
Here, the blocks aij and bij are the matrix of Mi by 
Mj. The notations “out” and “in” mean outer and 
internal fields of cylinders, respectively. The sub-
vectors of Mi order ez

(i), (i) and (i) indicate the 
incident wave, unknown field, and its normal de-
rivative on the boundary elements, respectively. 
The T and 0(i) mean matrix transpose and the Mi 
dimensional zero vector, respectively. Equation 
(3) implies that the lower half of coefficient matrix 
is comparably sparse. Then, we reduce the number 
of unknowns in half and obtain the linear system 
given by Eq. (6) [5]. 
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III. THE IDR(s) METHOD AND ITS VA-

RIANTS 
The IDR(s) method is one of the iterative solv-

ers for nonsymmetric linear system of equations 
and is derived by a new approach different from 
conventional BiCG-like and GMRES-like solvers. 
In the conventional solvers, the solution vector is 
iteratively refined thorough a bi-orthgonalization 
scheme and a minimal norm scheme over the Kry-
lov subspace, respectively [3]. In the IDR(s) me-
thod, whereas, spaces are iteratively generated 
from the complete Krylov space according to a 
rule. The solution vector is determined in order 
that the corresponding residual vector may belong 
to the spaces. From the IDR theorem, the dimen-
sions of the spaces monotonically decrease, and 
the residual vector converges to the zero vector [6]. 
Thus, the IDR(s) method is a new solver which 
belongs to neither BiCG-like nor GMRES-like 
solvers. 

The subsequent spaces are generated every s+1 
iteration, and we actually compute s+1 basis vec-
tors of corresponding space. Due to the induced 
dimension reduction, the residual vectors only for 
every s+1th iteration are expected to reduce mon-
otonically. In order to accelerate convergence, 
Sonneveld and van Gijzen introduced the minimi-
zation scheme for residual vectors based on an 
orthonormalization. They also adopt a bi-orthogo-
nalization scheme to minimize the residual vectors. 
The new solvers based on the above two tech-
niques are called “MR-IDR(s) method” and “Bi-
IDR(s) method”, respectively. 

A preconditioned MR-IDR(s) method and Bi-
IDR(s) method are listed in Figs. 1 and 2, respec-
tively. Here, we derive the preconditioned algo-
rithms based on a right preconditioning. A pseudo 
code of a preconditioned IDR(s) method is already 
presented in [7]. The notations K-1 and H stand for 
a preconditioner and Hermitian adjoint, respective-
ly. 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. A preconditioned MR-IDR(s) algorithm. 
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Fig. 2. A preconditioned Bi-IDR(s) algorithm. 

The matrix P = (p0  p1  …  ps-1) is an orthogonal 
matrix followed by [6]. The large bracket is Sleij-
pen and van der Vorst's convergence refinement 
technique. We fix the parameter  at 0.7 that is 
recommended by them [8]. This technique has the 
effect to reduce a spurious convergence for the 
IDR(s) method [7]. As shown in the pseudo codes, 
solving a linear system of s equations is necessary 
for the IDR(s) methods. We do it by using the di-
rect method with a LU factorization in the original 
IDR(s) method and the MR-IDR(s) method. In the 
Bi-IDR(s) method, the coefficient matrix M is a 
lower triangular matrix, and we obtain solution 
vector c by a forward substitution. 
 

IV. PERFORMANCE EVALUATION 
We treat EM wave scattering from regularly 

placed NN  dielectric circular cylinders whose 
configurations are listed in Tab. 1. The incident 
wave is assumed as a plane wave. Comparison 
among a various kinds of IDR(s) methods is car-
ried out in terms of the convergence and accuracy. 
It notes that the computation time is directly con-
nected with the number of matrix-vector multipli-
cations to convergence (abbreviate to 
``MATVECS'', hereafter) [5]. Computations are 
performed on Intel Core2Duo E6700 processor 
and 2GB of main memory. An iterative process is 
begun with x0 = 0, and the stopping criterion  is 
put at 10-10. A matrix-vector multiplication in an 
iterative process is expedited by the wideband fast 
multipole algorithm with the tolerance of 10-10 [2]. 
We exploit the block Jacobi preconditioning.  

Results of performance evaluation are dis-
played in Figs. 3 and 4. Here, the accuracy for 
converged solution vector xn is estimated by       
||Axn-b||2 / ||b||2. Performances of a full GMRES(m) 
method are exhibited in each figure. The full GM- 

 
Table 1: Physical parameters for cylinders 
Normalized radius: k0a 
Relative permittivity: r

(i) 
Relative permeability: r

(i) 
Length between each cylinder: k0d 
(in row and column directions) 
Fractional volume: f 

1.0 
2.0 
1.0 

ak0100  

 
0.01 
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Fig. 3. Fluctuation of MATVECS for parameter s 
of the preconditioned IDR(s) methods. 
 
RES (m) method means that the restart cycle m is 
decided in order that we may use over 90% of the 
amount of memory installed. These figures expose 
that both the MR-IDR(s) and Bi-IDR(s) methods 
refine not only the convergence but also accuracy 
for the original IDR(s) method. The MR-IDR(s) 
method is the best in the three types of IDR(s) me-
thod in terms of convergence and accuracy, and 
converges faster than the full GMRES (m) method. 
Unfortunately, the spurious convergence is con-
firmed in figure 4 but its feature is different among 
the solvers. Deterioration of accuracy for the MR-
IDR(s) and Bi-IDR(s) methods do not always oc-
cur and its impact may be in 1 or 2 digit error in- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Fluctuation of the accuracy for parameter s 
of the preconditioned IDR(s) methods. 
 
dependently of parameter s. The authors are consi-
dered that a mechanism of the spurious conver-
gence for the MR-IDR(s) and Bi-IDR(s) methods 
are identical but differ from that for the original 
IDR(s) method. 

Figure 5 exhibits convergence behaviors of a 
variety of IDR(s) methods with an optimal para-
meter and the full GMRES (m) method. The op-
timal parameter means that MATVECS is mini-
mum and the deterioration of accuracy is under 1 
digit. We can find from Fig. 5 that the full 
GMRES (m) method rapidly converge at first but 
the convergence curve of it becomes slow due to 
restart. 
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Fig. 5. Convergence of the preconditioned IDR(s) 
methods and the full GMRES (m) method. 

 
The convergence curves of the IDR(s) methods 

have a thumping vibration, but it reaches the value 
of stopping criterion at a constant rate. The magni-
fication of the curves for first several iterations is 
pasted on each figure. We can see from them that 
the convergence curve of the MR-IDR(s) method 
is smoother than other two types of the IDR(s) 
methods. The needles in the convergence curve for 
the MR-IDR(s) method are confirmed every s+1 
iterations. This may be caused by the update space 
in algorithm. 

Table 2 is the comparison of the convergence, 
the memory used, and accuracy among the variant 
IDR(s) methods for the top three parameters and 
the GMRES (50), GMRES (100) and full GM-

RES (m) methods. Here, the top three parameters 
mean that MATVECS is minimum and the accu-
racy is around the stopping criterion. 

 
Table 2: Comparison between the IDR(s) methods 
and the GMRES (m) methods 
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Here, we cannot execute the GMRES (100) 
method for N = 153 case due to the shortage of 
memory space. The ratio to the results of the full 
GMRES (m) method is written in the columns of 
MATVECS and Mem. in Tab. 2. 

Figures 2 and 3 and Tab. 2 disclose that the op-
timal parameters for the IDR(s) and MR-IDR(s) 
methods may be in 105  s  and 3025  s , 
respectively. However, that for the Bi-IDR(s) me-
thod is hard to determine because the top three 
parameters are quite different in each problem. 
The amount of used memory of the IDR(s) me-
thods increases proportional to parameter s. Then 
the MR-IDR(s) method with optimal parameters 
needs more memory space than the IDR(s) and Bi-
IDR(s) methods. 

The IDR(s) methods with the optimal parame-
ter converge faster than the full GMRES (m) me-
thod, and the difference of MATVECS becomes 
larger accordingly to the enlargement of problem 
size. The amount of used memory is less for the 
IDR(s) methods than for the full GMRES (m) me-
thod.  Therefore, we conclude that IDR(s) method 
is better than the GMRES (m) method in terms of 
not only convergence but also the amount of 
memory used in the large scale computation of 
EM wave scattering from many objects. Especially, 
the MR-IDR(s) method is the best among the three 
types of IDR(s) method in terms of convergence 
and accuracy. However, spurious convergence 
may occur, and the user has to check the accuracy 
for convergent solution. 

 
V. CONCLUDING REMARKS 

This paper remarks variants of IDR(s) method. 
Preconditioned MR-IDR(s) and Bi-IDR(s) algo-
rithms are presented. Performance evaluations are 
done for the computation of the dense linear sys-
tem of equations of order 105 followed by the 
BEM analysis of EM wave multiple scattering. As 
a consequence, the MR-IDR(s) method is the best 
among the three types of IDR(s) method in terms 
of convergence and accuracy. Optimal parameter 
for the MR-IDR(s) method may be in 3025  s . 
The MR-IDR(s) method with optimal parameter 
converges faster and spends less memory space 
than the full GMRES (m) method. However, the 
accuracy the MR-IDR(s) method may deteriorate 
in 1 digit independently of parameter s. The inves-
tigation and provision of it are important subjects. 
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