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ABSTRACT

Present solutions for the electromagnetic scattering by a vertex are either approximate
or difficult to use for computations. For example, GTD (UTD) solutions for vertex scattering
are not yet fully developed. The exact eigenfunction solution is both difficult to use and
computationally inefficient due to the large number of eigenfunctions that must be retained.

In this work, we obtain the scattering by a vertex (e.g., a quarter plane) by employing
the exact eigenfunction solution only in a very small region close to the tip of the vertex. Thus,
only a small number of eigenfunctions (e.g., two or three) are required to obtain the current in
the tip region. Outside of this region, the UTD is employed to obtain the current. The
changeover point is determined by finding the point where the eigenfunction current has decayed
to that predicted by UTD wedge and vertex diffraction theory.

Results will be shown for the scattered field from the plane angular sector. In addition,
the field scattered by a rectangular plate using this method will be compared with that predicted

by the UTD with vertex diffraction, and the results will be seen to be in very close agreement.

1The work reported in this paper was supported in part by Contract F19628-
78-C-0198 between Electronic Systems Division, Hanscom Air Force Base,
Massachusetts, and The Ohio State University Research Foundation and by NATO
Research Grant NG 1455.
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I. INTRODUCTION AND FORMULATION

The purpose of this paper is to combine the eigenfunction solution with UTD wedge
diffraction theory to obtain the current on a plane angular sector using only two or three
eigenfunctions. The use of only a few eigenfunctions is possible because the eigenfunction
solution is used to find the current only in the region very close (i.e., r=0.11) to the vertex.
The UTD is then used to determine the current everywhere else. Results will be shown for the
far field when the angular sector is illuminated by a short dipole. The angular sector work here
will be used with superposition and the UTD to find the current on four-sided thin plates.

The exact eigenfunction solution to electromagnetic scattering by a vertex was introduced
by Satterwhite and Kouyoumjian [1] and by Satterwhite [2]. The eigenfunctions and eigenvalues
in this paper were found from application of methods described in [1], although an alternative
approach may be found in [3].

The eigenfunction solution can be found by separation of variables in sphero-conal
coordinates [1-5]. A plane angular sector is a coordinate surface of the sphero-conal system and
it’s angle is determined by an ellipticity parameter k*. The sphero-conal system is described by

three coordinate surfaces which are a sphere, an elliptic cone and an elliptic half cone. The

r, 8, ¢ coordinates are related to the cartesian x,y,z by the following equations.

x = r cos y1-k’? cos’dp

r sin@ sind 1)

r cosp y1 - k? cos’®

y

z

where k2 =1 - k%, 0<k?><1,0 <0 < xand 0 < ¢ < 2n. The current on the angular
sector due to the current density J is determined by the dyadic Green’s function I(R, R") which
is given in [1] and [2]. Itis:

JR =ixHE,08=m0<¢<m)-HE0=m,5+¢)] )
where the magnetic field 17(13) is

HR = - Vx fvr (R, R - IR - av 3)
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An investigation of the eigenvalues and eigenfunctions of the problem shows that the
current on the plane angular sector is a function of the even Dirichlet (01) and the odd

Neumman (02) functions. For the even Dirichlet the current distribution from one eigenfunction

is:

7, B2, ) 252 @
o sind
and for the odd Neumman it is:
_ [rz, («n)Y TR
Ty = A —2— -¢02(¢)®+—1-@¢02(¢)r‘ Q)
xr Vo k' sing

The Z, (xr) function is the spherical Bessel function which becomes hfz) (xr) for
r>ryandj, (xr) for r < r, (r, is the distance of the source from the origin). A and B are
complex coefficients which depend on the location and the direction of the current source. x
is the wavenumber of the isotropic medium surrounding the plane angular sector.

For r << A the expression of the current will depend on the j,(xr) functions with small

values of v. That is because for x» << 1 we have:

J, (kr) ar’ (©6)

and

[,y
Y ar

Xr

Q)

Thus, the dominant current near the tip could be given by using the first few eigenfunctions.

For example, if we have a unit dipole source located as in Figure la, it was found that one must

include the first nonzero Neumman eigenfunction in order to obtain a contribution to the ¢
directed current. It is also found that the 7 directed current changes significantly for this
eigenfunction, and actually is the dominant term as the dipole is moved further out from the tip.

In Figures 1b and ¢ we can see the magnitude of the current distribution for two different
distances from the tip versus the azimuthal angle along the angular sector found by using the

first three or four eigenfunctions.
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Figure 1a  Unit dipole source located near a plane sector in the xz plane.
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Figure 1b  Total current distribution vs. azimuthal angle along the plane angular sector for

a distance r = 0.009\ from the tip due to a unit dipole located as in Figure 1a.
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Figure 1c Total current distribution vs. azimuthal angle along the plane angular sector for
a distance r = 0.01A from the tip due to a unit dipole located as in Figure 1a (the

two curves are identical).

As we can see, the fourth eigenfunction contributes less than 1% and so we can use only the

first three with good accuracy. K is the ellipticity parameter of the sector.

Far from the tip (xr >> 1) we could express the tip diffracted current with the help of

Equations (4) and (5) in the form:

. f_:’ﬁ ‘p1(¢) . A
JTD - X sin ¢ 7 (Pz(d)) ¢

where the functions ¢(¢) are:

¢,($) = Ay + Ajcosh + A, cos2 ¢ + .

@,(¢) = Bsing + Bsin2¢ B,sin3d + . .
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The unknown coefficients A; and B; can be found by using the EFIE to generate two systems of
linear equations using point-matching. The EFIE is

Axe®=-——ix[ (-otpel,G+V,J: VG)ds (11)
4njwe s

where G is the free space Green’s function and f, in this problem is given by:

.-I:=‘m, 0 <xr <1 (see egs. (4) and (5))
(12)

S=fGO+J¢dg,_,+Jm xkr>1

or in words, for xr 2 1 the current is the sum of the geometrical optics current, the diffracted

current from the edges and the tip diffracted current, respectively.

II. ANGULAR SECTOR RESULTS

By using the EFIE with just three sample points, we found the six unknowns in the tip

diffracted current expressions in Equations (9) and (10). The integration of EFIE was

terminated 204 from the sample point since the integrated functions go quickly to zero with
distance. The sample point locations were investigated regarding the sensitivity of the
coefficients in the tip diffracted current expressions. It was found that for distances more than1A
from the tip the results taken for the coefficients A;, B; are approximately the same. In Figures

2, 3, and 4 we can see the total field for an infinitesimal dipole located near the angular sector

and normal to it. The field is given for several ellipticity parameters (i.e., k> = 0.5, 0.6, 0.7,

0.8, 0.9). The distance from the tip is xr, = 2.0 with 6, = n and $, = % Our result for
k? = 0.5 is in good agreement with those given by Satterwhite [2].



Figure 2 E, field on z = 0 plane for five different angular sectors, k> = 0.5 to 0.9.

Figure 3 E, field on x = 0 plane for five different angular sectors, k* = 0.5 to 0.9.
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Figure 4 Total electric field y = 0 plane for five different angular sectors, k> = 0.5 to
0.9.

III. FINITE THIN PLATES

A finite thin plate has both edges and vertices. We can use the angular sector solution
and the UTD to obtain the currents. The current distribution expression is given by
superposition. For example a finite thin plate with N vertices has a current distribution given
by:

J‘ = Yiotal +Z; J;Daji + El Jj:ij+16j‘-6j+1’i region near the tip i
i j=
O<xr<ly (13)
-— - N - N -
J=J%+YJ+ Y I elsewhere
Jj=1 Jj+1 J
where
Oforj=1i
o _|0r s=t (14)
v 1forj #i

66



J} is the diffracted current from the tip j

.7;1.” is the diffracted current from the edge j, j+1.

Note that with the above expressions we do not neglect the interaction between the vertices.

By using the EFIE as in the previous section, except that the number of sample or match
points will be N times (N is the number of vertices) the number of the unknowns used in the
angular section case, we can determine the coefficients A; and B;.

Due to the nature of our solution it is easy to show, as in Reference 7, that the current
near the vertices has "edge condition" properties. This means that the current normal to the
edge vanishes as the square root of the normal distance and the current parallel to the edge has
a square root singularity. In Reference 7 there is a Figure D.2 (5a in this paper) which shows
the rectangular component of the current near the tip of a quarter plane. However, if we
calculate and plot the current in polar form rather than in rectangular form, we will easily see

the spike at the corner (Figure 5b).

Figure 5a  The rectangular J, component of the current near the tip of a quarter plane.
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Figure Sb  The rectangular J, component of the current near the tip of a quarter plane
(plotted along the radial lines).

Looking at the current on a 0.5\ by 0.5\ plate, we see the current in Figure 5c calculated in
rectangular form and in Figure 5d calculated in polar form at the vertices. (Note that the
vertical scales in Figures 5¢ and 5d are not the same.) A further difference between Figures Sc
and 5d is that the solution in Reference 7 does not allow the current to be calculated right up
to the vertices as a careful examination of Figure 5S¢ shows. From Figures Sc and 5d it is easy
to draw two different conclusions about the current distribution. However, we maintain that
both distributions are "correct", it is only that the one in Figure 5c is incomplete and thus omits
the spike on the four corners. the existence of the current spikes is also required by the
mathematics in Equations (5) and (7). Figure Sa shows that as we approach to the edge y, the
current has close to it a curved distribution. Figure 5b shows that close to the edge the current

tends to a concave distribution.
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Figure 5d  The polar coordinate current on a 0.5\ square plate.
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Results for a 1A by 1A square plate are shown in Figure 6 for plane wave incidence.
The current in Figures 6a and 6b may be compared with that presented in References 6 and 7
for this size plate. Figure 6 agrees with that in Reference 6 but not with that in Reference 7 as
we have discussed above. For larger plates our work disagrees with Reference 6 (the method
in Reference 7 is not useful for large plates). In Reference 6, Ko and Mittra observed no
singularity at the corners for 2\ by 2\ and 3\ by 3\ plates. We believe, that because the
interaction between corners is small for large plates, it is inevitable that a strong singularity be
observed in current there. This conclusion is the opposite of that in Reference 6. It may be that

the solution in Reference 6 is not converged for large plates.
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Figure 6a  Current distribution on a 1\ square plate.

At this time we might comment that previously in Reference 8 we did not include the
interaction between the vertices and did not obtain the correct cross polarized currents. The

cross polarized currents in Reference 8 vanished only along one symmetry axis whereas in
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Figure 6b we see that the current vanishes along both symmetry axes as it must from physical

considerations. From this we conclude that the interaction between vertices is important.
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Figure 6b  Cross-polarized current on a 1A square plate.

Figure 7 shows the current on a 2.5\ by 2.5\ square plate where the same properties are
shows as before. In Figure 7b the edge condition of the current is not shown for purposes of
clarity. Finally, Figure 8 shows the far field pattern of a short monopole or stub radiator at the
center of 81 square ground plane. The result is compared with an unpublished result by
Marhefka who obtained his result using the UTD with vertex diffraction [9]. The two results
are seen to be in very close agreement. Also in the same figure is shown the far field without

using tip diffraction. From this we can see the importance of tip diffraction.
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Figure 7a  Current distribution on a 2.5\ square plate.
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Figure 7b  Current distribution on a 2.5\ square plate without the edge condition.
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Figure 7c
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Cross-polarized current on a 2.5\ square plate.
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Figure 8
monopole in the center.

Far field pattern in the plane diagonally through an 8\ square plate with a shore



IV. SUMMARY

In this paper we have shown that only the first few eigenvalues of the plane angular

sector problem contribute to the current in a region very close to the tip itself. Beyond this

region the UTD may be used to obtain the current thereby overcoming the need to use large

numbers of eigenvalues and eigenfunctions.

We then applied the combined eigenfunction-UTD technique to find the currents and

resulting radiation fields. To demonstrate the validity of the solution, the radiation pattern of

a monopole at the center of a square plate is compared with that calculated with an unpublished

UTD solution which includes vertex diffraction. Two independent results are in very close

agreement.
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