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ABSTRACT: A numerical model is proposed for
application to dispersive  transmission  lines.
Numerical results are compared with the analytical
solution of the dispersive wave equation based on the
wave propagation solved by means of finite element
method in one dimension case and Newmark-p
method in the time domain. This comparison between
numerical and analytical solutions validates this
numerical method as a suitable method to study wave
propagation in dispersive transmission lines. Several
practical applications including  electromagnetic
propagation in a plasma and the transient response of
a surge wave in high-voltage rransformer windings are
presented in this paper,

1. INTRODUCTION

Transmission lines can be used to model a large
variety of imporiant applications in addition to the
transmission of a signal from one point to another [1].
Physical phenomena such as the propagation of
solitons [2}; breakdown process of an avalanche diode
[3.4]; high-voltage resistance divider [5]; various
plasma physics phenomena [6,7); propagation in
multi-layered earth media {8] have practical
applications which have been modeled by transmission
lines. While most of these problems can be solved
analytically some of them are extremely difficult or
impossible to solve by purely analytical methods.

Since the computational power of even quite small
computers has rapidly developed, numerical methods
are playing an increasingly important role in solving
the mathematical equations[9,10]. Such numerical
techniques have made wave propagation problems
easy to solve using numerical models and results can
be represented graphically for rapid understanding
[11].
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In this research, a one dimensicnal finite element
model is employed for a varicty of dispersive
transmission lines with a variety of boundary
conditions. The emphasis taken in this paper is that
the calculation technique itself is very important if
accurate and convergent solutions are to be obtained.
Calibration factors such as the ratio of lumped
capacitors (see fig. 1), velocity of traveling wave, the
clement size and time step have dependent
relationships which can not be ignored. The numerical
errors can be controlled by sufficiently fine
discretization. Initially the method is validated by
comparing numerical solutions with the analytical
solutions for the case of the dispersive wave equation
for a linear, homogeneous transmission line. In the
case of inhomogencous and nonlinear problems ihe
most suitable method is coften a numerical method.
Appropriatec models for nonlinear  dispersive
transmission lines are the subject of this paper.

2. A BASIC EQUATION FOR DISPERSIVE
TRANSMISSION LINES

Typical transmission lines with dispersive properties
can be categorized into linear and nonlinear
transmission lines. Fig. 1. shows generalized
dispersive transmission lines with both loss and
nonlinear characteristics.
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Fig. 1. Typical sections of transmission lines with
linear and nonlinear parameters

As a start in the numerical formulation of a number of
simple cases, the basic analytical solutions of
dispersive wave equations for a linear transmission
line must be obtained and compared with numerical
solutions. In this section the basic solutions of
dispersive wave equations are discussed:

21 Lossless dispersive transmission line
The lossless dispersive transmission line in Fig. 2 can

be described by a set of partial differential equations in
instantaneous voltage u and current i as follows [2]:
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where C; and C, are the series and parallel
capacitances per unit length and L is the series
inductance per unit length; i is the total instantaneous
current, i’ is the current in the inductive branch, u is
the instantaneous voltage and x is the direction of the
transmission line. From (1} and (2), we can derive a
dispersive wave equation for the voltage u

2u o’u d'u
i C2 2 = 0 3
o P oarax? @
where
C:=1/LC, (4)
3 =C, /G, )

The dispersion relation is obtained by assuming a
solution of the form u~ugy exp (jottkx).

2g2
o7 = _Cik
— 7., .272 6
1+ kA%, ©
where @ is the angular frequency and k is the wave

number of propagation. The dispersion relation is
shown schematically in Fig. 3 [13].
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Fig. 3. Dispersion relation of wave equation,

where C is the velocity of the wave.

In the case of C,—0, A, in the third term of eq.(3)
tends to zero. The lossless wave equation is retrieved,
there is no dispersion, and the initial waveform does
not change during propagation. It is the well known
wave equation [12]. However, when A (which is
called Debye shielding length in plasma physics) is



larger than zcro, the wave is significantly dispersive
and the waveform changes as the wave progresses.

Since eq. (3) is a linear dispersive wave equation, the
analytical solutions are obtained using the method of
Laplace transformation. Consider the (ransient
response for which the initial conditions of
transmission line and its derivative are

u(x,0)=0, {M} =0 7
at =0

and the boundary conditions for the open circuit at
terminal N are

#(0,8) =1, {M} =0 ®
ax x=f

where [is the total length of transmission line.

With the inverse Laplace transformation of solution
using Heaviside's expansion theorem, the exact
solution of Eq.(3) for the open boundary condition is
given by

= 16£%sin{2m—1)mx/ 24)
w0 =1 ;{w+(2m—1)zl%n’}(2m-1)“

-cos(@,, M

©)
where
® _ 2m-I)r
a1 C v Qm- 1R I CEY
(10

In the case of the boundary conditions for the terminal
short-circuited, the spatial initial conditions are the
same and the boundary conditions are given by

u(@)=1, u(f,t)=0 (11)

The exact solution obtained using the same procedure
as above, can be written

59

ulx,t) = (1—-;-)

N _2£% sin{mmx / £}
L (02 + m*Ain? Ymn

-cos(w,, )t

(12)
where

mnC,
[+ Amn]”

n =

m

(13)

For both cases,.as Ap, tends to zero, the solutions (9)
and (12) reach the well-known solutions of the non
dispersive wave equation [12]. The details of the
procedure of solving eq. (3) by using the method of
Laplace transformation can be found in [14].

2.2 Dispersive transmission line with loss

A natural extension of the dispersive transmission line
approach is the inclusion of resistance. The
transmission ling with loss is shown in Fig. 4, in
which linear and homogeneous parameters are
assumed [15].
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Fig.4. A section of linear dispersive

transmission line with loss

The equivalent circuit corresponding to the following
partial differential equation for the voltage u is
obtained as
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where o =(R/L)}\2, The dispersion relation for this
equation is derived as follows:
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1+ios )
We consider the transient response for which the
initial conditions and the boundary conditions for the
open circuited terminal are the same as (7) and (8)
respectively. With the inverse Laplace transformation
of solution using Heaviside's expansion theorem, we
derive the exact solution of Eq.(14).

- T (2"1—1 )
€ §in ™
m=1 zg

u(x,t)= I—EA ¢

-cos(m, )t
(16)

where / is the total length of the transmission ling, A,
is
2j

1+ {R+(=81 jo_)L)}-8% jw,)C, T"
{R+ (8% jo YL} -8 % jw )T, |

A =

—Btjm,ll[
2

1
C{R+2L(-6% jo,))
{1+C, (-8 % joo, MR+ L)}

(amn

8 and w, are expressed as follows:
d=R/2L (18}
2 {@m-pmf R

w: =
° 4fLC,+(2m-1)*r*LC, 4L

The case of the boundary conditions for the short-
circuited terminal must be considered here, when the
initial conditions are the same as that of e¢q. (11).
Using the same procedure as before, the exact solution
is

u(x,t)=(1-2)
l 20)

-YAe® sin(%?— nx)-cos(ms )

m=1
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where
A = 2J
- = . N I¥5)
54 jw tl 1+{R+(—5tJW,)L}(—S:I:]G),)C,
P02 R+ (B2 jw, )L}H(-5 £ jw,)C,

1
CAR+2L(-5 % jw,))
(1+C,(=8% jo, )R+ L)}

21)
g is cxpressed as

o = (mn)2 R?
s = g2 2.2 T 72
£°LC, +m*r°LC, 4L @2)

For both cases, as R tends to zero, the solutions of
(16) and (20) will be the same as that the solutions of
(9) and (12) which are the dispersive transmission
lines without loss.

3 NUMERICAIL MODEL OF DISPERSIVE
TRANSMISSION LINE

The wave propagation of an arbitrary waveform on a
dispersive transmission line is a time-dependent
problem. Such problems can usually be simplified and
solved as a unidimensional problem in time and space.
The finite element method requires that the spatial
field can be divided into a number of elements and
discretized by means of the Variational method or
Galerkin approach [16]. The system matrix equations
obtained can be then solved by Newmark-$ method or
the Runge-Kutta method. If the problems are related o
nonlinear propertics, then the Newton-Raphson or
Relaxation methods can be used to solve the nonlinear
System matrix equations.

31 Lossless dispersive transmission line

Using the Galerkin method, equation (3) for the one
dimensional case can be written as

4
G, = C2 -2 dx =0
I( o "aza }"

(23)

where Nj is a shape function, the matrix equation for a
single element is obtained as



[MY* {ii}* + CZIST )} + N5 [S1° {i}” = {0}
(24)

where (-} indicates the derivative with respect to time.
[M] and [S] are

Me— i 25
Se—l 26

where [€ is the length of element. Then we use the
Newmark-p method to solve for increasing time steps
[17]. The system matrix equation will be written as
for the Newmark-f§ method.

(ALLST1+[M D+ CHSHu} = {0} @D

A comparison between numerical solutions and
analytical solutions is given in Fig. 5 where the
element number is 20 and the number of nodes is 21.
The initial voltage at all i nodes u(i})=0 at =0, and the
boundary condition at terminal u(21)=0 for the short-
circuited case and odu/ox=0 for the open circuit. To
simplify the problem the mutual inductance is not
considered. Clearly, the numerical solution is in good
agreement with the analytical solution. In addition, it
was found that A, the time step At and the element
length Ax must be related by the conditions to ensure a
stable solution.

Ax | ABYC, (28a)

and

Ap(Ax(3A, (28b)
where At is the time step size, Ax is the element length
and C; is wave propagation velocity. Ap, is the Debye
shielding length {13] or ratio of lumped capacitors in
the section of dispersive transmission line.

The error control of time-dependent problems has been
discussed in many numerical method books and
articles, but the numerical solution of a dispersive
wave equation does not appear in those books and
atticles. To obtain a convergent solution with
minimum error, we found that the normal wave
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equation only needs condition (28a). For the
dispersive wave equation, the numerical solution must
not only satisfy (28a), but (28b) as well. The physical
meaning of Eq. (2Ba) is that the wave must not
propagate more than one subdivision in space during
one time step. Eq. (28b) means that the element
length must be chosen between Ay, and 34, [14]. Since
this transmission line is a homogeneous problem, to
gain minimum error from (28a) and {28b) the element
number was found to be 20 elements.
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Fig. 5. Comparison of numerical solutions

with step wave excitation. The
continuous line is the analyticai
results and the dashed line indicates
the numerical results,

The parameters used in calculation are the element
number = 20, C; = 5.68 cm/sec, Ap=3.29cm, and
{=55.2cm,

3.2 Dispersive transmission line with loss
Using the same procedure, the single element matrix

equation for a dispersive transmission line with loss is
obtained as follows:



[M]*{ii}* +C; [S]1°{u}* + A% [S]° {i)*
+o? [M] {uf+ oA [ST° {u}* = {0}
(29)

where [M] and [S] have the same details as (25) and
(26). Thus, the system matrix equations can be written
as eq. (30). The same numerical procedure as above is
used to solve the system matrix equations.

(IM1+ A5 [SD{i+ (@ (M) + A% [S1)u)

+C; [SHu} = {0}
(30)
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(a) Terminal is open, the continuous line is
for no loss, the dashed line is the loss case.
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(b) Terminal is short circuited, the continuous
line is for no loss, the dashed line is the loss
case.
Fig. 6. Dispersive transmission line with loss.

element number=20, Cs=5.68cm/sec,
Ap=52.91cm, a= 175.25sec, and /=95.2cm.
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Fig. 6 shows the results of ¢q.(30) solved by Newmark-
B method. The results indicate that the wave is not
damped significantly during propagation, even at the
present value of parameter { o= 175.25sec) used in
the caiculation.

33 Inhomogenous dispersive transmission line

Sometimes it is of interest to consider inhomogenous
problems in a continuous transmission line with finite
length. The distributed parameters of the transmission
line for each section may be different, but this does not
result in a significant difference in the solution. The
matrix equation for inhomogenous problems can be
wrillen as

crine (G o),
(M1 (i) +[ AT ]{u}
3D
1 Ve
+( OO }{u} =(0)

where the parameters of Cy(n)-Al, Ln)/Al, and Cy(n)/
Al are dependent on each section, and n is the section
numbet of an inhomogenous transmission line.

4, NUMERICAL MODEL OF NONLINEAR
DISPERSIVE TRANSMISSION LINE

Nonlinear dispersive transmission lines have been
used for describing various physical phenomena. In
particular, the soliton wave propagating in a plasma is
governed by the well studied Kortewg-de Vries (KdV)
equation has been investigated [18,19], and the
numerical solution of the KdV equation has been
proposed by Tadahiko Kawai ctec. [20]. In other
practical applications in which L{i") and Cy(u) bave
various characteristics, the KdV equation can no
longer be used. One must then find 2 numerical model
which can be used with various nonlinear parameters.
The matrix equations of nonlinear dispersive
transmission lines for each element are proposed as
follows:

4.1 Dispersive transmission line with nonlinear
inductance

For simplifying the problem, the lossless dispersive
transmission line shown in fig. 7 is considered, where
L{i) is a nonlinear inductor dependent on the current



or the voltage difference between two points of each
section.
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Fig.7. A section of dispersive ransmission
line with nonlinear parameter L

The matrix equation for the dispersive transmission
line with nonlinear inductance problem can be written
as

(M (ii)* +[g—:[sr ){ur

(L( e, [SY° ){ii}’ ={0}

where L{i'} is a nonlinear inductance related to current

ot

i.

(32)

42 Dispersive transmission line with nonlinear
capacitance

In the same consideration, the lossless dispersive
transmission line can be described as fig.8, where
Co() is a noulinear capacitor dependent on the
voltage u. The matrix equation for the dispersive
transmission line with nonlinear capacitance problem
can be written as

eqre k e e
[M]" {u} +(C0 (u)[Sl J{u}

ST @y =10
[LC( )[ ]]{u} {0} -
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Fig. 8 A section of dispersive transmission
line with nonlinear parameter Cy(u)

Equations (32) and (33) can be solved by using the
Newion-Raphson method or the decelerating
relaxation method which has been often used in the
nonlinear electromagnetic fields analysis [21,22].

5. APPLICATIONS OF DISPERSIVE
TRANSMISSION LINE

As we discussed in the introduction, the dispersive
transmission line can be used for modeling various
physical phenomena and practical application
problems. In this section, dispersive transmission lines
are used to investigate wave propagation in a plasma
and the transient response of a surge ir transformer
windings.

5.1 Dispersive wave propagation in plasma

It is well known that the electron plasma waves and
ion-acoustic waves are electromagnetic waves which
propagate in nonmagnetized plasmas. Since the
characteristic frequency of the ion-acoustic wave is
lower than the ion-plasma frequency (Q.pi), both
electrons and ions participate in this wave motion. The
ion-acoustic wave is not strongly damped only when
the ion temperature T; is much lower than the electron
temperature 7,. The ion-acoustic wave equation for
the perturbed ion density n is defined as follows [23]);

d°n, o’n, d'n,
-Cl—L =N, ——=0
b atzax (34)

or? 5 ax?

where C; and Ap, are the ion-acoustic wave velocity
and Debye shielding length respectively.

C,=(T. /I M)" (35



Ap = (T, /4nn,e’)” (36)

T, M and ngarc the electron temperature, mass of ion
and steady component of the ion density respectively.

Assuming u = 7i,, the dispersive transmission line can
be used to describe the ion-acoustic wave in the
plasma. Hence, the C, and Ap, can be replaced as

C, =(T./ M) =1/ LC)'"? @7
b = (T; I4m0e2)ll2 - (Ck ,CO)UZ (38)
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Using the same numerical approach of the previous
section, the ion-acoustic wave of the plasma with
different input pulses can be obtained [14]. These are
illustrated in Fig. 9 and Fig. 10. From Fig.9, we
found that the numerical solution has a good
agreement with the analytical solution from (12).
There are some phase shift between them after several
oscillations, which can be considered as a computer
processing error. Fig. 10 shows the pulse response in
plasma. The comparison between numerical and
experimental results has made for the pulse response
in piasma [14].

52 Dispersive wave propagation in high-
voltage (HV) wansformer windings

In order to choose a proper winding arrangement and
insnlation structures in the design of HV transformer
windings, the transient voltage stresses to all sub-
components of the structure must be known. To
investigate voltage oscillations and impulse-voltage
stresses in HV wtransformer windings during impulse
test and design reliable insulation structure for the HV
transformer windings which can withstand various
kinds of transient over voltage, the most convenient
and lowest cost method of acquiring transient voltage
response data is using a numerical model of the
transformer windings and solving for the time
function response to applied voltage pulses by means
of a suitable numerical analysis. Normally, the
impulse response and produced higher transient
voltage in the wansformer windings can be calculated
by using the  distributed equivalent circuit of
transformer windings as a transmission line has been
used as shown in Fig. 11 [24,25]). To simplify the
problems the case of the mutual and nonlinear
inductance is not considered in this calculation.
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{a) Cross-section of a typical 2-winding

H.V. wansformer
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(b) Distributed equivalent circuit of
transformer winding

Fig.11 Numerical model of H.V. transformer
windings, Element number=20, 1.=4.5mI/Al,
C=67.5pF-Al, C,=383.5pF/Al, and
1=95.2cm.

The impulse voltage oscillations caused by resonant
circuit which is e¢xcited by any impulse can be
calculated by numerical or analytical method. The
voltage oscillations in the transformer windings is a
kind of dispersive wave propagation and the
frequency of oscillations and amplitude of transient
voltages can be calcolated by eq. (9) and (12) where
the applied impulse is a step wave.

For the other different shapes of impulse voltage
(including the IEC standard lightming impulse
voltage waveform [26] ) and the inhomogenous
distributed equivalent circuit of transformer winding,
the calculation can be easily done by numerical
methods. The numerical results for transient responses
from various applied impulses are shown in Fig. 12
(15].
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Fig. 12. Standard lightning impulse voltage
response, element number=20,
L=4 5mH/ai, C=67.5pF-Al,
Cy=383.5pF/Al, and [=95.2cm.

The effect of dispersion is an oscillating voltage which
is up to 1.5 times the input impulse voltage in the case
of shorted-circuit and the oscillating voltage will be
larger than 2.0 times the input impulse voltage at the
opened terminal, if the initial voltage is not zero.
Alternatively, for the chopped waveform, there is no
significant transient overvoitage along the transformer
windings [15].

6. CONCLUSIONS

In this paper, dispersive wave propagation in various
transmission line configurations is discussed. Basic
analytical solutions with step wave excitation were
found and compared to finite element solutions. The
results show good agreement. The error control of
numerical solution can be worked out by using eq.
(28a) and (28b). The numerical model has advantages
in dealing with some practical systems excited by
different excitation waveforms, especially for
inhomogenous, lossy and nonlinear problems.
Appropriate numerical models have been proposed.
Although while only two applications were modelled
by dispersive transmission lines, there are many more
interesting phenomena which can be modeled using
these techniques,
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