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Abstract

A computer code named Vectorized Multiple
Plate Scattering (VMPS) code has been developed
at the Ohio State University ElectroScience Labora-
tory to compute the scattered fields from structures
that can be modelled using perfectly conducting flat
plates. The VMPS code uses a moment method ap-
proach to solve an electric field integral equation for
the scattered fields. The code utilizes the vectotiza-
tion capability of CRAY supercomputers o compute
the scattered fields very efficiently. In this paper,
the operation of the VMPS code is described and its
vectorizsation efficiency is demonstrated.

I. INTRODUCTION

A computer code named Vectorized Multiple
Plate Scattering (VMPS) code has been developed
at The Ohio State University ElectroScience Lab-
oratory (OSU-ESL) to compute the scattered fields
from structures that can be modelled using perfectly
conducting multiple polygonal flat plates. In the
VMPS code, an electric field integral equation is
solved using a moment method (MM) solution to
compute the scattered fields. The code utilizes the
vectorization capability of CRAY supercomputers
and, thus, computes the scattered fields very effi-
ciently. The MM solution used in the code is basi-
cally the same as used in the Electromagnetic Sur-
face Patch (ESP) code (1}. However, the code has
been rewritten to facilitate vectorization on a CRAY
supercomputer.

In the MM solution, the equivalent currerts on
the various plates are approximated by piecewise si-
nusoidal basis functions defined over guadrilateral
patches. Therefore, this code divides the various
plates into quadrilateral patches. A piecewise si-
nusoidal function (mode) is defined over every two
quadrilateral patches that share a common side.
Whenever two plates have a common edge, over-
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Figure 1: Quadrilateral patches on two flat plates
and modal distribution. (—) plate modes, (=)
overlap modes.

lap modes, as shown in Figure 1, are placed near
the edge to ensure the continuity of currents. The
test sources in the moment method solution are fila-
mentary dipoles placed along the axial center of the
various modes.

In this paper, the operation of the code is de-
scribed and the approach used to vectorize various
section of the code is discussed. The CPU time used
by the code on a VAX 8550 computer, an IBM 486
personal computer and a CRAY Y-MP computer are
compared. The vectorization efficiency of the code
is studied by executing the code on the CRAY Y-
MP computer both in scalar and vector modes. It
is shown that by developing a code so that vector-
ization is facilitated, one can decrease the CPU time
by a factor as large as 8.

II. CODE DESCRIPTION

An EM moment method code, in general, consists
of the following steps.



Read the geometry of the structure, frequency
of operation and angular regions along which
the scattered fields are to be computed.

Set up the modal distribution.
Compute the impedance matrix [Z].
Compute the excitation vector {V].

. Solve for the unknown current coefficients [I].

I A A

Using the equivalent currents, calculate the
scattered fields.

7. Write the scattered fields to a data file.

For electrically large structures (defined by more
than 50 modes), Steps 3 and 5 use most of the CPU
time followed by sieps 4 and 6. These four steps ac-
count for more than $8% of the total CPU time. The
VMPS code is, therefore, written to facilitate the
vectorization of these four steps. Since steps 1 and 7
involve input/output operations which can’t be vec-
toriged, no attempt has been made to vectorize these
sections of the code. Further, existing software from
the Electromagnetic Surface Patch Code [1] is used
to set up the modal distribution. The approach used
to vectorize steps 3 through 6 is discussed below.

Impedance Matrix

Using the MM solution of an electric field integral
equation (EFIE), the elements of the impedance ma-
trix are given by

Zmn = - f.[j;l - Emdsn
S

where E,, is the field of the m'™ test source, I
is the current distribution on the n'® mode, N is
the total number of modes, and the integration is
carried over the surface defining the n'® mode. In
the MM solution used in the code, the test sources
are filamentary dipoles placed along the axial center
of the various modes. Thus, a test source consists
of two sinusoidal monopole filaments placed end-to-
end. The radiated fields of a monopole filament with
sinusoidal current distribution are known in closed
form. For example, if the monopole is positioned
along the z axis, as shown in Figure 2, the field at a
point P(p, z) is given by
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Figure 2: A filament with a sinusoidal current dis-
tribution positioned along the z axis.
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Figure 3: Mode n is defined by filamentary V-

dipoles.

where 7q is the free space intrinsic impedance, d is
the length of the monopole, and v is the complex
propagation constant. For this work, v is purely
imaginary. The distances {p, R), Ry), angles (8,,6:)
and unit vectors (5, £} are defined in Figure 2. Note
that (2) does not include the field contribution from
the point charge at the end of the monopole. Since
two of these monopoles are placed end-to-end to
form a test source, the contributions from the two
point charges are cancelled. The field, Em, of the
m!" test source is found by adding the fields -of the
individual monopoles. Next, numerical integration
can be carried out to solve (1).

Note that when the observation point P moves

" closer to the filamentary dipole, the distance R, and

)
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R will become small and the ficld as given in (2) will
approach infinity. Thus, (2) can not be used to cal-
culate the self impedance terms or the impedance
terms for overlapping or touching modes. Let these
terms be defined as near-sone terms. To compute
the near gone terms, the n'* mode in (1) is rep-
resented by an array of filamentary V-dipoles (see
Figure 3). The impedance term is then found as
the weighted sum of the reaction between the test



source and these filamentary V-dipoles. To compute
these reactions, the distance between the test source
and each filamentary V-dipole is examined. Numer-
ical integration is performed whenever the distance
is large enough such that (2) is not singular. Oth-
erwise Richmond’s [2] closed form solution is used.
The closed form solution involves complicated expo-
nential integrals and requires more CPU time.

In the VMPS code, to facilitate vectorization, a
whole row of the impedance mairix is computed at
a time rather than as individua} elements. This ap-
proach increases the size of the DO loop stractures,
which increases the vectorization efficiency. Note
that the m!® row of the impedance matrix represents
the reaction from the test source m to all modes.
This section of the code involves the following steps.

Calculate the distance between the test source
and the various modes.

1.

Separate the near zone terms and select the
number of integration points for the other terms
(far zone terms).

Select the location of the integration points on
the various modes and calculate the weights for
these points.

Find the reaction between the field of the test
source and the currents at the selected points.

Sum the weighted point reactions to calculate
the far rone elements of the impedance matrix.

6. Compute near rone terms.

In the first step, the distances from the m'" test
source to the various modes are calculated. These
distances are used in the second step to identify the
near zone terms and to determine the number of
integration points for the other terms. If the dis-
tance between the test source and a mode is less
than a predetermined distance, that element of the
impedance matrix is computed using the near zone
approach in step 6 and the number of integration
points for the mode is set equal to zero. Other-
wise, numerical integration is used to compute the
element. The number of points used in the integra-
tion is selected based on the distance between the
soarce and the test mode. For distances less thar or
equal to A/4, 50 integration points are used. For dis-
tances between 1/4 and )/2, 18 integration points
are used. For distances between A/2 and 2A, 8 in-
tegration points are used, and for distances greater
than 2A, only two integration points (a single point
on each quadrilateral defining the mode) are used.
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Figure 4: Filamentary monopole distribution when
the source monopole lies along the center line of a
quadrilateral.

Note that this step provides a map of the number of
integration points for various modes.

In step 3, the locations of the integration points
on the various modes are found and the integration
weights for these points are defined. In step 4, the
reaction between the fields of the m!* test source and
the currents at all the integration points selected in
step 3 is calculated. Note that for large structures
the total number of integration points will be very
large. Thus, the DO loop structure in this step has
8 large index. In the VMPS code, this DO loop
is written to maximize vectorization. In step 5, the
point reactions associated with a mode are combined
to obtain the elements of the impedance matrix.

The above five steps compute all the elements of
the m' row of the impedance matrix except the near
zone terms. The near zone terms are computed in
step 6. Again, to facilitate vectorization, all the near
zone terms are calculated as a group, rather than as
individual elements. The procedure used to compute
the near zone terms is briefly described below.

To compute a near zone term of the impedance
matrix, each quadrilateral of a mode is represented
by an array of filamentary monopoles. The distri-
bution of the filamentary monopoles depends on the
location of the source monopole (remember that the
test source consists of two monopoles) with respect
to the quadrilateral. If the source monopole lics
along the centerline of the quadrilateral, then the
filamentary monopole distribution on that quadri-
lateral is given in Figure 4. Otherwise, the filamen-
tary monopoles are equally spaced on the quadri-
lateral. Using the above approach, the filamentary
monopole distribution on all the near zone modes for
a given source monopole is found and the integration



weights for the various monopoles are calculated.
Next, these filamentary monopoles are grouped in
two sets. The first set coniains all of the filaments
for which the reactance can be computed using nu-
merical integration, and the second set contains the
filaments for which Richmond’s clogsed form solution
is used. The reactances for the two sets are com-
puted in two separate DO loops. Again, the DO
loops are written to facilitate vectorization. Next,
these reactances are combined to obtain the elements
of the impedance matrix. Tt should be pointed out
that Richmond’s solution involves extensive compu-
tations and is very hard to vectorize.

This completes the ealeulation of one row of
the impedance matrix. The procedure is repeated
over all of the test sources to compute the whole
impedance matrix.

Excitation Vector

Using the MM solution of EFIE, the elements of
the excitation vector are given by

ﬁ El' * J_;n. d1’111.

Viu

Vie = (3)

where ﬁ.- is the incident field, Jon is the current along
the mth tesi source and the integration is performed
over the volume of the test source. Since filamentary
test sources are used in the VMPS code, (3] can be

written as
f E; - Jdly,

b

Vin

(1)

where integration is carried out over both monopoles
that comprise the test source m.

Let the impressed current source be located at
(r0, 8., ¢) and separated by a large (electrically) dis-
tance from the scatterer. Then the incident field E;
can be considered as locally planar and can be writ-
ten as

ﬁ,‘ = E‘oejki:f" (5)
where E, is a constant containing the polarization of
the incident field, 7, is a unit vector from the coordi-
nate origin to the source and 7'is a radial vector from
the origin to the observation point. Substituting (5)

into (4}, one obtains

Vi = BEo- / Tnel¥T ol (6)
,m
Or,
477 = =
‘/m = _"ﬁEO " Em (7)
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where

"‘"‘ f T dl (8)

[

is the far-zone field of the m!* source. The closed
form expression for the far-zone fields of an elec-
tric line source with sinusoidal current distribution
is known [3]. Since the test source consists of two
monopoles with sinuseidal current distribution, En
and, thus, the elements of the excitation vector are
known in a closed form. In the VMPS code, all the
elements of the excitation vector are calculated in
a single DO loop, and this DO loop is written io
facilitate vectorisation.

Current Coefficients

Once the impedance matrix and the excitation
vector have been determined, it is a straight-forward
task to compute the current coefficients. The cur-
rent coefficients are given by the following set of Lin-
ear equations.

[21(1] v {9)
where [Z] is the impedance matrix, [V] is the ex-
citation vector, and [I] is a vector containing the
current coefficients. Most of the vector computers
have very efficient routines to solve a set of simul-
taneous linear equations. For CRAY supercomput-
ers, NAGLIB library routines are recommended. In
the VMPS code, routines FO3AHE and F@IAKE are
used. Rountine FOJAHE is used for LU decomposi-
tion, and routine FO3AKE is used in the second step

(ba.ck substitution).

Scattering Field Calculations

To calculate the scattered fields, the current flow-
ing on the surface of various modes is represented
by 5 filamentary V-dipoles with piecewise sinusoidal
current distribution. The scattered field for each
mode is then given by the weighted sum of the 5 V-
dipoles representing the mode. The fields radiated
by a given filamentary V-dipole can be calculated by
summing the fields radiated by the two monopoles
forming the dipole. As pointed out before, the closed
form expression for the far-zone fields of an elec-
tric line source with sinusoidal current distribution
is known. Thus, to calculate the scaitered fields,
one needs to compute the fields radiated by 10N
monopoles, where N is the total number of modes.
Next, all these fields can be summed to compute the
toial scattered fields. In the VMPS code, a single
DO loop is used to calculate the ficlds radiated from



Table 1: CPU time (in seconds) used by the VMPS
code to analyze 1 meter square plate on various com-
puters.

CRAY Y-MP
Freq. | No.of | VAX IBM scalar | vector
(MHsz) | modes | 8550 | 486 PC | mode | mode
300 40 113.75 109.14 10.36 1.48
400 84 301.31 282.10 26.55 3.81
500 144 596.88 569.75 52.72 7.32
600 180 800.02 757.41 69.26 9.03
700 264 1400.18 ; 1344.58 | 117.89 | 15.62
800 364 2275.81 | 2171.21 | 184.78 | 23.64
800 420 2809.23 | 2664.00 | 223.83 | 28.33
1000 544 4308.07 | 4050.88 | 327.86 | 42.10

all monopoles. Again, the DO loop is written fo
facilitate vectorisation.

Thus, the four major steps (3-6) in the moment
method code have been vectorized. The improve-
ment in the computation speed due to this vector-
isation is demonstrated in the next section.

III. CODE EFFICIENCY

The VMPS code was executed on various com-
puters to calculate the backscattered fields from a
square plate and the CPU time used by the code on
these computers is listed in Table 1. The plate di-
mensions are 1 meter x 1 meter. The backscattered
fields are calculated at different frequencies along a
45° conical cut in 1° steps (361 aspect angles). The
CPU time listed in the table is the time spent in
steps 3 through 8 of the computer program. The
pumber of modes used to define the equivalent cur-
rents on the plate at various frequencies is also listed
in the table. Note that, as expected, the number
of modes increases with the frequency of operation,
and so does the CPU time used to calculate the plate
back scattered fields. For fair comparisons, only a
single processor was used on the CRAY computer.
Note that the code uses the maximum CPU time on
VAX 8550 computer and the minimum CPU time
on CRAY Y-MP computer. This is true even if the
vector option of the CRAY computer is not utilized;
i.e. the code is compiled with no vectorization op-
tion (scalar mode operation). When the vectoriza-
tion option is utilized on the CRAY, the CPU time
shows further improvement. At higher frequencies,
the CPU times used in the vector mode of opera-

Table 2: CPU time used to calculate the impedance
matrix on a CRAY Y-MP computer,

CPU (seconds)
Freq. | Scalar | Vector | Improvement
(MHz) | Mode | Mode
300 7.30 0.96 7.60
400 19.37 2.73 7.10
500 38.52 5.29 7.28
600 49.97 6.53 7.65
T00 84.18 11.48 7.33
800 128.61 | 17.07 7.53
900 152.48 | 20.05 7.60
1000 215.53 | 29.65 7.27

tion is only one eighth of the CPU time used in the
scalar mode of operation, which is a significant im-
provement. In the vector mode of operation, the
code uses only 42 CPU seconds to analyze the plate
at 1,000 MHg, which is very efficient.

When the code was run on the VAX 8550, IBM
486 and in the CRAY scalar mode of operaticn, a
subroutine based on Crount’s method [4] was used to
solve for the unknown current coefficients in step 5.
In the CRAY vector mode of operation, this sub-
routine was replaced by NAGLIB subroutines. The
reason for using the Crout based subroutine in the
scalar mode of operation is that the NAGLIB sub-
routines are compiled using the vectorization option
and we did not have access to the source subroutines.

Next, to study the extent to which various sections
of the code have been vectorized, the CPU time used
in the various sections of the code in scalar mode and
vector mode of operation are compared. Tables 2, 3,
4 and b, respectively, compare the CPU time used
to calculate the impedance matrix, excitation vee-
tor, current coeflicients and the backscattered fields.
Note that, as expected, all sections of the code use
less CPU time in the vector mode of operation. The
improvement in the CPU time used to calculate the
impedance matrix is approximately a factor of 7.5,
whereas, the improvement in the CPU time used
to calculate the excitation vector is approximately
a factor of 8.8. Similarly, the improvement in the
CPU time used to calculate the scattered fields is
approximately 7.8. In general, for an optimally vee-
torized computer code the improvement in the CPU
time in the vector mode of operation is a factor of
9-10. Thus, these sections of the code have been vec-
torized effectively. The improvement factor for the
CPU time used to calculate the current coefficients



Table 3: CPU time used to calculate the voltage
vector on a CRAY Y-MP computer.

CPU (seconds)
Freq. | Secalar | Vector | Improvement

(MHz) | Mode | Mode
300 0.41 0.053 7.74
400 0.86 0.11 7.82
500 1.47 0.19 7.74
600 1.84 0.21 8.76
700 2.70 0.31 8.71
800 3.72 0.42 8.86
900 4.30 0.49 8.78
1000 5.56 0.63 8.82

Table 4: CPU time used to calculate the current
coefficients on a CRAY Y-MP computer.

CPU (seconds)
Freq. | Scalar | Vector | Improvement
(MHz) | Mode | Mode
300 0.39 0.097 4.02
400 1.63 0.27 6.04
500 4.75 0.68 6.98
600 7.47 0.94 7.95
700 16.43 1.88 8.74
800 32.31 3.52 5.18
900 43.88 4.73 0.28
1000 76.80 7.93 9.68

Table 5: CPU time used to celculate the scattered
fields on a CRAY Y-MP computer.

CPU (seconds)
Freq. | Scalar | Vector | Improvement

(MHz) | Mode | Mode
300 2.19 0.30 7.30
400 4.62 0.63 7.33
500 7.91 1.11 7.13
600 9.91 1.28 7.74
700 14.51 1.87 7.76
800 20.06 2.58 7.84
900 23.11 2.99 7.73
1000 20.87 3.82 7.82
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Table 6: CPU time (in seconds) used by the VMPS
code and the ESP4 code on a CRAY Y-MP com-
puter.

Freq. Scalar mode Vector mode
(MHz) | ESP4 | VMPS [ ESP4 | VMPS
300 6.48 10.36 68.24 1.48
400 16.33 26.55 15.36 3.81
500 33.58 52.72 30.39 7.32
600 49.9b 89.28 40.46 9.03
700 81.09 | 117.89 | 69.19 15.62
B0OO 134.41 | 184.78 | 110.41 | 23.64
9200 169.71 | 223.83 | 136.87 | 28.33
1000 263.18 | 327.86 [ 204.21{ 42.10

increases with an increase in the frequency of opera-
tion and reaches as high as 9.68. This improvement
may be misleading in the sense that different rou-
tines have been used in the scalar mode and vector
mode of operation. Remember that in the vector
mode of operation NAGLIB subroutines are used;
whereas, a Crout based subroutine is used in the
scalar mode of operation. In any event, the CPU
timme in the vector mode of operation is quite small
and it is clear that NAGLIB subroutines are very
efficient.

Next, to demonstrate the computation efficiency
of the VMPS code, its CPU times are compared with
the CPU times of the ESP4 code. Both codes were
executed on the CRAY computer in scalar as well
as vector mode of operation using the same options.
The same modal distribution was used in the two
codes. Table 6 shows the CPU time used by the
two codes at different frequencies. Note that in the
scalar mode of operation, the ESP4 code is a little
more efficient than the VMPS code. This is because
the VMPS code performs more calculations and is
written to calculate the impedance matrix more ac-
curately. The ratio of the CPU times used by the
two codes, however, is approaching unity at higher
frequencies. In the vector mode of operation, the
VMPS code is completely outperforming the ESP4
code. The VMPS code is 4-5 times faster than the
ESP4 code. The ratio of the CPU time used by the
ESP4 code to the CPU time used by the VMPS code
increases with an increase in the frequency of opera-
tion. Thus, the VMPS code utilizes the veciorization
capability of CRAY supercomputers better than the
original ESP4 code.



IV. SUMMARY AND CONCLUSIONS

The operation of the VMPS code was described
and the approach nsed to vectorize the various parts
of the code was discussed. It was demonstrated that
the code runs very efficiently on CRAY supercom-
puters. For example, te compute the back scattered
fields of a square plate with 544 modes, the code used
only 42.1 CPU seconds on a CRAY Y-MP machine.

For the VMPS code, the CPU time may not be the
limiting factor in analyring electrically large strue-
tures. The available memory space may be the lim-
itation. This problem can be addressed using an
out-of-core mairix solver. In the future, the VMPS
code will be modified to incorporate out-of-core ma-
trix solver.
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