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Abstract─ The full wave simulation of 
reverberation chamber in time domain usually 
takes large computational time because of its 
resonant characteristic. This contribution makes 
the pioneer exploration of accelerating this kind of 
simulation by time-domain signal prediction. The 
prediction technique is based on the well known 
matrix pencil method (MPM). An approximation 
to the existing MPM is proposed to obtain a new 
kind of MPM, which is more computationally 
efficient. To conduct the prediction effectively, the 
signal’s oversampling should be avoided and the 
singular values appeared in MPM should be 
judged appropriately. The signal can be re-
sampled according to Nyquist sampling law while 
the singular values can be selected by the newly 
proposed criterion based on cavity theory. For 
wideband time-domain responses, it is suggested 
to apply digital band-pass filter before prediction 
to get higher precision. Using the proposed 
methods, the computational time can be reduced 
almost 50 % for the reverberation chamber’s 
FDTD simulation. 

  
Index Terms – Digital band-pass filter, FDTD, 
matrix pencil method, reverberation chamber, and 
signal prediction. 

 
I. INTRODUCTION 

The reverberation chamber (RC) is an 
essentially electrically large cavity made of highly 
reflective metallic walls and excited by a source. 
Acting as a lower cost alternative to anechoic 
chambers or open area test sites, RC has become 
an attractive electromagnetic compatibility test 
facility recently [1]. It has the advantages of 
producing a statistically uniform field within a 

relatively large volume, generating high-peak 
fields from comparatively modest input powers, 
and isolating the test environment from a 
potentially noisy ambient environment. 

Numerical modeling plays an important role in 
the process of RC design and analysis, and there is 
a variety of modeling methods as reviewed in [2]. 
Recently, some hybrid methods both in time-
domain [3] and frequency-domain [4] have 
attracted much attention in the field of RC’s 
proper simulation. To sum up, a large proportion 
of the correlation studies adopted the time-domain 
methods to take advantage of wideband analysis. 
The finite-difference time-domain (FDTD) method 
[5] is the typical one because of its explicit scheme 
and wide applicability. However, there exists a 
well known problem that it is hard to reach 
convergence in RC’s time-domain simulation 
because of its strong high-Q resonances [6, 7]. 
Using the advanced computational techniques, 
such as domain decomposition and parallel 
computation, could alleviate this contradiction to a 
certain degree. But a more general solution to this 
problem seems to be time-domain signal 
prediction, i.e., using the early signal records to 
predict the late signal response for accurate 
frequency domain parameter estimation. Although 
the RC’s numerical modeling has attracted many 
attentions, its accelerated simulation by this way is 
rare to be seen. 

In time-domain simulation, a Gaussian pulse 
excitation is usually applied whose pulse width is 
much shorter than the whole simulation time. 
Therefore, the electric field (E-field) response 
within the RC is almost determined by the RC’s 
geometry. What’s more, because the excitation 
signal has a specific frequency range, the E-field 
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response could be regarded as the sum of 
exponentially damped sinusoids with the damping 
rate related to RC’s losses. Therefore, it is feasible 
to predict the remaining response using the 
complex exponentials extracted from the truncated 
response. 

The matrix pencil method (MPM) is proposed 
to estimate parameters of exponentially damped 
/undamped sinusoids in noise [8], which is more 
computationally efficient than the polynomial 
method. Several modified versions of MPM have 
been studied since it is firstly introduced. B. Lu 
proposed the improved MPM using low-rank 
Hankel approximation [9]. Recently, MPM has 
attracted many attentions [10, 11] and has 
contributed to solving several computational 
electromagnetic problems [11-13].  

In this contribution, the time-domain response 
of RC is fitted to a model of sum of complex 
exponentials and a new kind of matrix pencil 
method is proposed based on an approximation to 
the existing modified matrix pencil method 
(MMP). Through comparison, this method is 
demonstrated to be more computationally efficient 
and to retain the same precision. Before obtaining 
acceptable predicting results, special attention 
should be paid to signal’s proper sampling and 
singular values’ appropriate judgment. Fortunately, 
in the case for RC’s time-domain response’s 
prediction, the required major singular values for 
MPM could be estimated effectively according to 
cavity theory. Since the computing time for 
prediction can be neglected compared to that of 
RC’s numerical simulation, the proposed hybrid 
method combing simulation and prediction can 
accelerate the time-domain simulation of an RC 
considerably. 

 
II. MODELING RC’S TIME-DOMAIN 

RESPONSE  
In this section, the RC’s time-domain response 

is analysed theoretically ending up with the linear 
fitting model, i.e., sum of exponentially damped 
complex exponentials. On the one hand, the RC’s 
stored energy U meets, 

 t d t

dU
P P U

dt Q
P


   (1) 

where tp  is the net power delivered into RC, dp is 

RC’s total dissipated power,  is the angular 
frequency, and Q is the quality factor embodying 
the overall losses of a real RC. The equation is 

expanded using the definition of Q  [14]. Solving 
this differential equation leads to,  

 0e 0,
t

U U t


  (2) 

where 0U corresponds to the stored energy when 

the excitation pulse is terminated and /Q  is 
the time constant of RC [14]. According to the 
cavity theory, the amplitude of E-field strength is 
directly proportional to the square root of U . 
Moreover, the E-fields are assumed to be 
statistically uniform. Therefore, 

 / 2|,| | and| | |
t

t
x y z eE eE E  

   (3) 

where |,| |, and| | |x y zE E E correspond to the 

amplitude of E-field in the , , and x y z orthogonal 
directions, respectively. In short, the E-fields 
within the RC decay exponentially. 

On the other hand, there exist limited resonant 
frequency components for a settled RC within the 
investigated frequency band. To sum up, the time-
domain response ( ), 1, 2,...,s k k N  of an RC 
excited by a pulse can be modeled as the sum of 
exponentially damped complex exponentials, 

 
1

( ) , 1, 2,3
M

i

k
i is k c z k N



    (4) 

where  N  is the signal’s length, M is the number 
of major exponentials, , 1, 2,...,ic i M are fitting 

coefficients, and , 1, 2,...,i ij
iz e i M     are 

complex exponentials with i  being the damping 

factors and 2i if   the angular frequencies.  

Once iz  and M  are determined from the 
truncated early response of an RC, then 

, 1, 2,...,ic i M  can be derived by solving a least-
squares problem [8]. Consequently, the late 
response can be predicted by increasing N  to be 
large enough. 

 
III. DERIVATION OF A NEW KIND OF 

MPM 
In this section, a new kind of MPM is 

proposed based on an approximation to the 
existing modified MPM. 

A. Recalling the conventional MPM 
The observed data (probably contaminated by 

noise ( )n k ) is expressed as, 

 ( )= ( ) ( ), 1, 2,...,y k s k n k k N  . (5) 

In order to extract , 1,2,...,iz i M  from ( )y k , the 
Hankel data matrix Y is constructed as, 
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 1 2 1, , ,[ ]Ly yY y  +=  (6) 

where /L N �  is called pencil rate parameter 

satisfying M L N M< < -  and the column vector, 
 T[ ( ), ( 1), , ( 1)]l y Ny ll y l Ly  - += -+  (7) 

where the superscript T  denotes the transpose 
operator. The matrices 1Y  and 2Y  (with the same 
size) are obtained by removing the last and first 
column of Y , respectively.  

The matrix pencil for 1Y  and 2Y  is defined 

as 2 1Y Yl- , with l  a complex parameter. If 

( )=0, 1,2,...,n k k N , 2 1Y Yl-  can be rewritten as,  

 2 1 1 0 2= [ ]Y Z C ZY ZIl l- -  (8) 
where  
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, (10) 

 0 1 2,diag{ },..., Mzz zZ , (11) 

 1 2, ,...ag{ ,di }Mcc cC . (12) 

Because izl=  is the rank-reducing number of 

this matrix pencil, the eigenvalues of 1 2Y Y+  can be 

regarded as , 1, 2,...,iz i M , where + denotes the 

Moore-Penrose pseudo inverse operator. If ( )y k is 

contaminated by noises, the rank of 2 1Y Yl-  is 
probably larger than M , and the low-rank 
approximation to Y is proposed to suppress the 
noises before adopting the same procedure to 
derive , 1,2,...,iz i M [15]. In the first step, the 
SVD of Y  is carried out, 

 HY = U V
é ù
ê ú
ê úë û

S O
O O

 (13) 

where the superscript H denotes the conjugate 
transpose, U and V are made up of the 
eigenvectors of HYY and HY Y , respectively and 

1 2,d ,iag( , )qs s s= S  is composed of the nonzero 

singular values i arranged in a descending 
sequence. In the second step, M major singular 
values are selected to make up, 

1 2diag( , ), min ), , ( ,M M N L Ls s s¢ = < -S . (14) 

Then the reduced-rank approximation (its operator 
L ) of Y  is derived as, 

 H( )Y Y U V¢ ¢ ¢ ¢= =L S  (15) 

where ¢U and V ¢ are obtained by choosing the 
front M columns of U and V , respectively. It is 
proved that among all the matrices with the same 
size of Y , ¢Y is the one, which has the minimum 
Frobenius norm deviation to Y , and this deviation 
decreases as M increases [11].  

The simple criterion to determine M would be 
checking whether , 

 1/ 10 p
Ms s -<=  (16) 

where p  is an appropriately chosen value 
according to the specific predicting data. These 
selected singular values can be regarded as the 
weight coefficients corresponding to the major 
resonant components. In contrast, those discarded 
ones having trivial values corresponds to the noisy 
components. 

The same method as used in the noiseless case 
could be utilized to get iz  from ¢Y , while an 
equivalent but more computationally efficient 
technique is to calculate the front M eigenvalues 
of , 

 H
21

H{ ' } 'V V+  (17) 

directly to estimate iz  [15], where (in Matlab 
notation), 

 1 2' (1: ,:), ' (2 : 1,:)L L¢ ¢= = +V V V V . 
The computation burden can be alleviated in this 
way because the operation to obtain 'Y  is avoided. 
This conventional method is named mp. 

B. Derivation of the new kind of MPM 
While ( )YL  does not remain the Hankel 

structure, the reduced-rank Hankel approximation 
(its operator J ) is introduced to derive ( )YJ , 
which possesses both the Hankel structure and 
rank-deficient properties. This modification is 
helpful in suppressing noises. By the aid of H  
known as the Hankel approximation operator. An 
iterative algorithm of J  is available where each 
iteration executes H  and L , successively. For a 
given matrix X , the iterative algorithm of J  is 

 ( ) ( ) ( ) lim( ( ( )) )
G

G




 


 X X XJ HL HL HL . (18) 

For more details about J , the reader can refer 
to [16]. The modified MPM using J  is stated as 
below, which is named mmp1. 
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The main difference from mp occurred in step 1, 
i.e., the pre-treatment of the original master matrix 
Y , which retains the Hankel structure in the 
process of filtering noise represented by operator 
L . The subsequent steps resemble that of mp. 
Analyzing the computational burden of mmp1, L  
is the key factor because it is more time-
consuming than H  considering the SVD. In 
order to avoid L , the approximation to step 3 is 
proposed to reduce the executions of L  from two 
times to one time. That is 

 1 2
ˆ ˆ ˆ ˆ ˆ= ( ), (:,1: ), (:, 2 : 1)L LY Y Y Y Y YL = = + ,  (19) 

in the case when Lɛ1.  
What is more, recalling the equivalent 

procedure mentioned above equation (17), it is 
preferred to derive the required M eigenvalues 
from matrix V  directly, rather than rely on matrix 
Ŷ  needing additional multiply operation between 
matrixes. To sum up, a new kind of MPM, named 
mmp2, is proposed as below, 

1 2

H H
1 2

1. ( ),

2. obtain ( ),

3. (1: ,:), (2 : 1,:),

4. Calculating the front  eigenvalues of { } .

from 

L L

M 







 

   

 

= =

Y Y

V Y

V V V V

V V

J

L
 

Because the condition Lɛ1 is usually satisfied, the 
method mmp2 is assumed to get the almost 
identical results with mmp1 with less computation 
burden. 

C. Validation of the proposed method 
The advantage of mmp1 had been shown in [9] 

compared to mp. As mmp2 is proposed based on 
mmp1, its feasibility and effectiveness is validated 
by comparing the simulation result from mmp1 
and mmp2. The similar example as in [16] is 
employed. M = 10, N = 1000, and  = 0.60. The 
symbol , 1,2,...i i M   are randomly chosen from 

1.0 / N  to 1.5 / N . In Matlab notation, this is  

 rand(1,
1

2

1
)*M

NN
  . 

Similarly, ic  are randomly chosen within [1, 2], 

and i within [0.35*2, 0.5*2]. Once these 
parameters are determined, series ( )s k are built 
according to equation (4).  

As we focus on the real-time signal prediction 
for RC’s response, only the real parts of ( )s k  are 
considered. Both the methods mmp1 and mmp2 are 
used to extract iz  under different signal-to-noise 
ratio (SNR), which is defined as 

 
var( )

SNR=10 log10
var( )

s

n





 
 

. (20) 

Then, ci are derived using the least-square 
method. Because the complex exponentials are 
used to fit the real-time series, setting the number 
of the selected major singular values to be 20 is 
optimal meaning 10 pairs of conjugate complex 
exponentials. The original and fitted signals are 
named yo and ys, respectively. The prediction is 
achieved through lengthening ys by enlarging N. 
Here, both yo and ys are lengthened to 2000. That 
is to say only 1000 data are used to determine the 
unknown parameters, such as zi and ci. The second 
half signal is obtained through prediction. Their 
relative error  

 s o 2

o 2

|| ||

|| ||

y y

y



 , (21) 

is regarded as the indicator for evaluating the 
performance of the two methods. As shown in Fig. 
1,   is exactly the same for both methods and it 
decreases as the SNR increases. This coincidence 
demonstrates the effectiveness of the 
approximation presented by equation (19). In fact, 
ɛ	 is a severe indicator, because the agreement is 
already quite acceptable when   is below 0.15. In 
detail, the fitting and predicting performance 
under 0.10   are shown in Fig. 2 and 3. As we 
can see, satisfactory agreement is reached. 

What is more, the consumed time 1t  and 2t  of 
mmp1 and mmp2,  respectively, on a PC with a 3.0 
GHz CPU is compared in Table I. Obviously, the 
proposed method mmp2 is more computationally 
efficient than mmp1 with the same precision. This 
is because J  can reach convergence within 
several iterations and mmp2 reduces the operation 
time of L  effectively. Besides, the computation 
time increases as the SNR decreases, because 
lower SNRs usually correspond to more iterations 
in J . 
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Fig. 1.   from mmp1 and mmp2 versus SNR. 
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Fig. 2. Local performance of fitting. 
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Fig. 3. Local performance of predicting. 

Table. I. Comparison of 1t (mmp1) and 2t (mmp2). 

SNR 1t / s 2t / s 

5  dB 17.4 13.6 
10dB 14.7 11.8 
15dB 10.5   8.9 
25dB   7.9   6.2 
40dB   6.4   5.3 

IV. APPLICATION TO ACCELERATING 
RC’S FDTD SIMULATION 

Through predicting the RC’s time-domain 
response from the truncated simulated signal, the 
RC’s simulation is accelerated. Here, we focus on 
RC’s FDTD simulation, but the prediction 
methodology is also applicable to the results from 
other time-domain simulation methods. 

A. Configurations 
The investigated RC’s dimension is 10.5 m  

8.0 m  4.3 m with the lowest usable frequency 
about 80 MHz. It is equipped with two different 
stirrers rotating in step-by-step mode, i.e., 
mechanical stirring. With the aid of the published 
codes in [5], it is simulated by FDTD with the 
spatial meshing step dx = dy = dz = 0.1 m and time 
step dt = 1.73  10-10s. The transmitting antenna is 
a 1.6 m long dipole antenna modeled using the 
thin-wire technique [5]. A modulated Gaussian 
pulse with the specified frequency band (80~120) 
MHz is applied to the antenna. 

On the disposal of RC’s losses, treating the 
conductivity of the materials in numerical model 
as the real values is found to generate much higher 
electric field strength than measurement data [7] 
because the real RC includes many kinds of losses 
and they can hardly be reproduced by RC’s 
numerical model. Alternatively, drawing on the 
proposition from [7], the approximation method is 
introduced by regarding the material of the RC as 
PEC and setting the air’s conductivity air to be 
about 5 51.5 10 ~2 10   S/m [17]. That is to say the 
overall losses of the RC approximately equals to 
the losses on the RC’s inner air volume. This value 
is higher than 510 S/m in [7] because our RC’s 
material is mainly galvanized steel rather than 
aluminum and its reflection coefficient is lower 
than aluminum [17]. It is worth noting that we 
emphasize on the prediction on the time-domain 
response rather than the details about RC’s 
numerical modeling.  

The simulation runs for a number of time steps 
Nts until the amplitude of the E-field strength is 
attenuated to nearly 1 % of the peak value. Eight 
sampling points within the RC’s working volume 
are selected for E-field output at x, y, and z 
directions. The proposed method mmp2 is adopted 
for the prediction.  
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B. Implementation issues 
The RC’s time-domain response from FDTD 

simulation is believed to possess a relatively high 
SNR. Acceptable agreement can be reached 
between the predicted response and the simulated 
signal for RC providing both the following issues 
are taken into accounts, i.e., signal re-sampling 
and appropriate choice of M (the number of the 
major singular values). 

The signal re-sampling refers to ensuring the 
signal is sampled appropriately before prediction 
according to the Nyquist sampling law. Under this 
configuration, as the sampled frequency 1/dt is 
much higher than the ceiling of the investigated 
frequency band, these E-field signals are re-
sampled at 1/20 times 1/dt with the Nyquist 
sampling law still satisfied. In fact, the re-
sampling is crucial for good prediction results 
because oversampling means redundancy and 
additional computation burden for MMP. 

Besides the signal’s re-sampling, the key 
parameter M can no longer be determined as 
effortless as in section III. The simulation data 
show that determining M by the criterion 
represented in equation (16) is neither reliable nor 
convenient because controlling the key parameter 
p calls for trial and error attempts. Alternatively, 
since M depends on the number of resonant 
frequencies, it can be determined according to the 
number of the RC’s activated resonant modes 
within the simulated frequency band. We manage 
to estimate the total number of activated resonant 
modes approximately based on the cavity theory. 
In this way, the resonant frequency (in Hz) 
corresponding to a potential resonant mode can be 
expressed as, 

 
2 2 2

, ,
RC RC RC2m n p

c m n p
f

L W H

     
      

     
  (22) 

where c is the velocity of light in vacuum and 

RC RC RC, ,L W H  are the rectangular cavity’s length, 
width, and height, respectively. Using equation 
(22), about 90 different resonant frequency 
components are determined for our simulating 
frequency band. So it is reasonable to set M = 180. 
Although, the RC equipped with some stirrers 
usually demonstrates more complex field 
distribution with a relatively larger density of 
resonant modes compared with the empty case, the 
prediction results show that it is indeed an 
effective approach to derive M for MPM. This can 

be understood considering that the number of 
‘activated’ resonant modes in the RC with stirrers 
is close to that of the ‘potential’ resonant modes in 
the same RC without stirrers. 

C. Results of prediction 
We took two cases for results’ checking. In 

case one, we assume an RC with the same 
dimensions is under low losses and set 

5
air =1 10  S/m. The required Nts is 40000 

corresponding to about 70 minutes’ operation on a 
PC with a 3.0 GHz CPU. Each of the obtained E-
fields’ responses is projected to 2000 data by the 
re-sampling method. Similarly, the first half data 
are used by mmp2 to determine the unknown 
parameters and the relative error t with the same 
definition is used for performance checking. 

According to equation (14), the span of the 
key parameter  should satisfy, 

 , (1min{ ) }N MN   . (23) 

Through simulation optimization, the smallest  is 
obtained for most sets of the E-field signals  when 
 = 0.6. Its results are shown in Fig. 4. The fitted 
and predicted signal converges to zero as the same 
as the original simulated signal. From local 
checking, acceptable agreement is obtained.  

Moreover, the fitting-predicting performances 
for all these sets of E-field signals from different 
locations within the working volume of the RC are 
shown in Fig. 5 where the 10th set corresponds to 
the results in Fig. 4. Acceptable performance is 
obtained with all t below 15 %. The results are 
close to each other since all these 24 sets of 
sampled signals share the same RC’s resonant 
characteristics. 

In essence, only the second half signal by 
prediction is of significance. So additional 
attention is paid to the semi-simulated semi-
predicted signal whose relative error between the 
complete simulated data is tc, which is certainly 
smaller than t as shown in Fig. 5. Although the 
improvement degree from t to tc is far less than 
50 %, which means the prediction is not as good 
as the fitting, the indispensable effect of prediction 
can be seen in Fig. 6. Here, the relative error in 
frequency-domain between the complete 2000 
simulated data (after re-sampling) and the front 
1000 truncated data (truncation means the rest of 
signal data are assigned to zeros) is denoted as f, 
while the relative error between complete signal 
and semi-simulation semi-prediction signal is 
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labelled fc. From Fig. 6, fc is indeed smaller than 
f, so the method combining simulation and 
prediction is feasible and effective. 
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Fig. 4. Performance of fitting and predicting for 
RC’s time-domain response. 
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Fig. 5. Performance versus different sets of E-field 
signals. 
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Fig. 6. Comparison of relative Error in frequency-
domain. 

In case two, since it had been validated that 
the overall losses of our RC in reality can be 
approximated by increasing air to about 2.0  10-5 
S/m [17], we took air = 2.0  10-5 S/m with Nts = 
26000, which means the higher level of losses the 
fewer of simulation time steps. Using the same 
method for signal re-sampling, the length of the 
usable data shrunk to 1300. Similarly, the first half 
is used to predict the second half employing 
method mmp2, where M is also set to 180. The 
prediction performances are showed by the dashed 
line in Fig. 7, which are a little worse than that in 
Fig. 5. The relative error tc for some set of the E-
field signals even exceeds 30 %. The main reason 
is that the length of available data used in mmp2 
shrunk a lot compared with that in case one. 
Consequently, the formerly optimized parameter  
= 0.6 is no longer the preferential choice for case 
two. After optimization, setting  = 0.7 can obtain 
quite acceptable results for all sets of the E-field 
signals as shown in Fig. 7. 
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Fig. 7. Comparison of tc with different . 

 
In other cases, when the investigated 

frequency band is enlarged, it is not easy to ensure 
tc below 15 %. That is because the number of 
potential resonant modes will increase swiftly as 
the frequency band expands. From our preliminary 
exploration, in order to obtain acceptable 
prediction results, the number of properly sampled 
data used for prediction should be several times of 
the total number of resonant components. 
Therefore, in order to get higher precision, it is 
suggested to apply digital band-pass filter to the 
wideband time-domain responses before 
prediction. 
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V. CONCLUSION 
In this contribution, accelerating RC’s time-

domain simulation employing signal’s prediction 
is shown to be feasible. Since the RC’s time-
domain response has the characteristics of 
resonance and exponentially damping trend, it can 
be formulated as a sum of complex exponentials 
whose unknown parameters can be estimated 
effectively by the matrix pencil method. An 
approximation is proposed to save unnecessary 
reduced-rank decomposition in the MPM, which 
leads to a new kind of MMP, which is more 
computationally efficient and retains the same 
precision. In its application to RC’s time-domain 
response prediction, the major singular values can 
be estimated appropriately by the newly proposed 
criterion base on the cavity theory. Simulation data 
show that the RC’s time-domain response from 
FDTD modeling can be fitted and predicted 
effectively. Noting that the consumed computing 
time by MMP can be neglected compared with 
that by FDTD simulation, the hybrid method 
combining simulation and prediction can save 
considerable time for RC’s time-domain 
simulation (almost 50%). Moreover, the 
employment of this predicting technique is 
independent of the RC’s simulation tool. It can 
give reasonable results only if the under-predicting 
signal has an appropriate sampling rate and the 
major singular values are selected effectively.  
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