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Abstract ─ In this paper, a hybrid model is 
proposed for including lossy ground effect on 
scattering response from nonlinearly loaded dipole 
antenna. In this model, at first the input admittance 
and induced current at dipole antenna situated over 
lossy ground are efficiently modeled based on the 
fuzzy inference concepts. Volterra series model is 
then applied to compute the induced voltage 
across nonlinear load at different frequency 
harmonics. Numerical examples show not only the 
accuracy of the proposed hybrid model but also a 
high computational efficiency in comparison with 
previous hybrid models.   
  
Index Terms ─ Dipole antenna, fuzzy inference, 
lossy ground, and nonlinear load.   
 

I. INTRODUCTION 
Nonlinear loads are connected to antennas 

terminal so as to protect devices against strong-
strength exciting waves. A typical nonlinearly 
loaded antenna vertically suited above ground 
plane as well as its microwave equivalent circuit is 
shown in Fig. 1. In Fig. 1 (b), Yin is the input 
admittance of the dipole antenna and Isc is the 
short circuit current due to incidence of exciting 
waves. There are several methods for analyzing 
such structures in frequency domain [1-7] and 
time domain [8-11]. Time-domain-based analyses 
lead to accurate results; however, they are both 
relatively time-demanding, and they cannot be 
easily used to include the effect of lossy ground. 
Analysis in frequency domain on the other hand is 
based on solving microwave circuit in Fig. 1 (b), 
so that the numerical method of moments [12], 
MoM, for computing Yin and Isc, and methods of 
analyzing nonlinear microwave circuits [13] for 

computing induced voltage across nonlinear load 
are combined. It is well known that these hybrid 
models, suffer from repetitive and time consuming 
computations due to changing parameters of 
exciting waves and lossy ground.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 

(b) 
 

Fig. 1. (a) Schematic diagram of nonlinearly 
loaded dipole antenna over lossy ground and (b) 
microwave equivalent circuit.  
 

Up to the author's knowledge, there is no 
comprehensive closed form solution for including 
lossy ground effect on wire antennas except in 
[14], restricted to ||/25.0 0 rh  where r  is 
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relative complex dielectric constant of ground and 
in [15], which is valid for 10r .  

In order to overcome these mentioned 
drawbacks and restrictions, the novel model based 
on fuzzy inference introduced by Tayarani et al. 
[16] can be taken into considerations. In the 
previous study [17], the behavior of the dipole 
antenna in free space was considered as simple 
membership functions as shown in Fig. 2, and 
using that Yin and Isc were well predicted in free 
space. However, analysis of this problem in the 
presence of lossy ground was not addressed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The membership functions representing the 
behavior of the dipole antenna in free space, for 
(a) modeling circular movement and (b) modeling 
partial phase. 
 

In this paper, at first using approximating the 
behavior of the dipole antenna in the presence of 
lossy ground with the one in free space, the effect 
of lossy ground on Yin and Isc are then easily 
extracted as very simple curves, and hence 
complete models of  Yin and Isc in the presence of 
lossy ground are achieved. Volterra series model 
[6] is finally applied to Fig. 1 (b), so that the 
induced voltage at different frequency harmonies 
is computed.  

In section II, formulation of the intelligent 
method [16] is briefly explained. Modeling Yin and 
Isc based on this model is given in section III. 
Substituting these methods in microwave 
equivalent circuit of Fig. 1 (b) and solving it by 
Volterra series is in section IV. Finally, conclusion 
is given in section V. 
  

II. FORMULATION OF FUZZY MODEL 
Instruction of the fuzzy-based model 

according to [16], for a problem is briefly 
explained as below:   

1. Plot amplitude versus phase of output in 
polar plane to observe circular movement, 
and then find basic circles making this 
movement. 

2. Choose three-point sets as starting points 
on each basic circle and then fit a circle 
and line on each three-point set as fuzzy 
inputs. 

3. Define membership function for each 
fitted circle. These functions have 
belongingness one on each fitted circle 
and smoothly decreasing to zero on the 
neighbor fitted circles by the following 
equation,    
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where 1 and 2 represents optimizations 
parameters and v is input value. Also a1 

and a2 are points where fitted circles are 
completely fitted on the circular 
movement. 

4. Infer a circle for each input value using  
the following inference equation,  
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in which niryx iii ,...2,1,,   are center 

coordinates and radius of the fitted circles, 
respectively and x, y, and r as fuzzy 
outputs are center coordinates and radius 
of inferred circles for each input value. 
Also i is a membership function obtained 
in the previous step.    

5. Fit lines on the three-point sets and infer a 
line for each input value to model partial 
phase (as defined in [16]) the same as 
circular movement. 

6. Compute center coordinates and radius of 
the fitted circles for a few values of 
parameter, and then fit simple curves on 
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them to estimate the characteristics of 
fitted circles and lines for new values of 
parameter. These simple curves denote the 
effect of this parameter lonely on output.            

7. Repeat the above steps for the other 
parameters.  

 
III. MODEL OF DIPOLE ANTENNA 

BASED ON QUALITATIVE CONCEPTS 

A. Modeling input admittance  
Consider a dipole antenna of length 20 cm 

vertically situated above a lossy ground. The 
ground effect is characterized by three parameters, 
i.e., relative dielectric constant r, conductivity  
and vertical spacing h.  

To extract the effect of the ground dielectric 
constant lonely, it is assumed the other ground 
parameters is constant ( = 0 and h = 0.01 m). 
Hence, the amplitude versus phase of the input 
admittance in the frequency interval of 0.1 GHz  
2.3 GHz is shown in Fig. 3.   
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Fig. 3. The amplitude versus phase of input 

admittance (S) of dipole over ground for different 
values of r .  

 
As it is seen in Fig. 3, circular movements 

including three basic circles for different values of 
r are observed. It seems that the only difference 
among them is center coordinates and radius of 
basic circles.  

Therefore, at the beginning of modeling, the 
behaviour of the problem over lossless ground is 
approximated with the one in free space (Fig. 2), 
and then center coordinates (xi, yi) and radius (ri) of 
fitted circles for a few values of r are computed by 

MoM and simple curves are finally fitted on them 
as shown in Fig. 4.  

Mean while in order to show the effect of the 
ground with respect to free space, they are 
normalized to individual ones in free space denoted 
by (Xn, Yn) and Rn. 

Now using these simple curves as fuzzy inputs 
and the problem behaviour (Fig. 2), the input 
admittance (actual output) for each new value of 
relative dielectric constant is predicted. Figure 5 
shows the input admittance for r = 2.5. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The effect of the dielectric constant of 

ground on the input admittance using simple 
curves. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5. The input admittance (mS) of dipole 
antenna suited 0.01 m away from lossless ground 
(r = 2.5,  = 0), for (a) conductance (mS) and (b) 
susceptance (mS). 
 
 As it is seen, comparing the results of 
method of fuzzy (MoF) with accurate ones 
(MoM) shows excellent agreement while the 
run-time is considerably reduced. To include 
the conductivity effect of the ground on the input 
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admittance lonely, it is assumed that r = 1, h = 
0.01 m, and the amplitude versus phase of the 
input admittance for a few values of conductivity 
is plotted in Fig. 6. Extracting the conductivity 
effect on input admittance is the same as the 
dielectric constant and shown in Fig. 7. Once 
more, using the achieved simple curves as fuzzy 
inputs and the behavior of the problem, the input 
admittance of dipole over lossy ground for each 
new value of conductivity is easily predicted. 
Meanwhile in Fig. 7, n is normalized conductivity 
in decibel (n = 10log(/0.0001)).  
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Fig. 6. The amplitude versus phase of the input 
admittance (S) over ground for different 
conductivity values. 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 7. The effect of conductivity on the input 
admittance.  
 

 In a similar manner, the effect of vertical 
spacing can be extracted from Fig. 8 under 
assuming r = 1,  = 0.0001 (S/m), and h as a 
varying parameter. According to [18], spatial 
membership functions can be used to combine the 
effects of more than two parameters but they 
cannot be viewed as a figure. Thus, in this paper 
without loss of generality, the two effects of r and 
 are combined as follows,  
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Fig. 8. The amplitude versus phase of the input 
admittance (S) over ground for different spacings 
under assuming r = 1 and  = 0.0001 (S/m). 

 
The spatial membership functions in this case 

are shown in Fig. 9. In this figure, two fuzzy sets 
for the two independent parameters (r, n) are 
seen in which each one has belongingness value of 
one at its individual axis and it is smoothly 
decreasing to zero at the other axis. 

The following inferred equations can be used 
to extract the fitted circles versus simultaneous 
effects of r and n, 
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where xj(i), yj(i), rj(i), i = r, n, j = 1, 2, 3 are 
center coordinates and radii of fitted circles 
extracted in Figs. 3 and 5. Also, r and n are 
spatial membership functions in Fig. 9. Finally, 

),(),,(),,( nrjnrjnrj ryx  are the inferred 

coordinates and radii of fitted circles, respectively 
representing simultaneous effects of the two 
parameters on the input admittance as shown in 
Fig. 10.  
 
 
 
 
 

 

 

 

 

 

 
 
 
 
Fig. 9. Spatial membership functions for 
combining effects of r and n. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. The input admittance (mS) of dipole 
antenna suited 0.01 m away from lossy ground ( 
= 0.01 S/m, r = 2.5) for (a) conductance and (b) 
susceptance. 

From now on, using these inferred spatial fuzzy 
inputs and the behavior of dipole antenna in free 
space (Fig. 2), the input admittance of the dipole 
antenna over lossy ground for each value of r, , 
and h is efficiently predicted. 
 
B. Modeling induced current 

Modeling the induced current is the same as the 
input admittance, thus the dielectric constant effect 
is only extracted. Figure 11 shows the amplitude 
versus phase of the induced current on the dipole 
antenna over lossless ground illuminated by a plane 
wave with incident angle 50i .   
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Fig. 11. The amplitude versus phase of induced 
current (A) for different values of dielectric 
constant.  
 

In this figure, the circular movements for the 
induced current are observed. Hence, again 
approximating the behaviour of the dipole antenna 
over lossy ground with the one in free space (Fig. 
2), the dielectric constant effect on the induced 
current can be easily extracted as shown in Fig. 12. 
 

The created fuzzy system is run for 
5.2r and 10r . The predicted results (MoF) 

in addition to the accurate ones (MoM) are shown 
in Figs. 13 and 14, respectively. As it is seen in 
Fig. 13, good agreement is achieved while run-
time is vanishingly short, but Fig. 14 shows 
considerable error between the two methods 
around 45.0/ 0 L . 
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Fig. 12. Extracted relative dielectric constant 
effect on the induced current. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13. The induced current computed by MoF 
and MoM for r = 2.5 for (a) real part (mA) and 
(b) imaginary part (mA).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14. The induced current computed by MoF 
and MoM for r = 10 for (a) real part (mA) and (b) 
imaginary part (mA). 

 
To know what happens around 45.0/ 0 L , 

look exactly at the Fig. 15 showing the amplitude 
versus phase of the induced current for 

5r and 10r . According to Fig. 15, 
increasing relative dielectric constant, a new circle 
between the first and second circles is getting 
formed. It means that in order to predict exactly 
the induced current around 45.0/ 0 L , a fitted 

circle and line around 45.0/ 0 L  should be 

added (in equations (2) and (3)). Hence, according 
to step (3), the new membership functions for 
modeling circular movement and partial phase are 
considered and shown in Fig. 16. These new 
membership functions represent the behavior of 
the problem for high dielectric constants.  
 

 
 
 
 
 
 
 
 

 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Fig. 15. The amplitude versus phase of the induced 
current in polar plane for, (a) 5r  and (b) 

10r  (to distinguish circles better, the third basic 
circle is not shown).  
 

Comparing Fig. 16 with Fig. 2 shows a new 
membership function around 45.0/ 0 L  
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representing presence of a new circle and line in 
this region. Now, with the use of these new 
membership functions, and four fitted circles and 
line as fuzzy inputs, the induced current for 

10r  is well predicted as shown in Fig. 17. 
Similar to Fig. 12, center coordinates and radius of 
the new fitted circle for high dielectric constants 
can be extracted as shown in Fig. 18. 

 
IV. COMPUTING INDUCED VOLTAGE 

ACROSS NONLINEAR LOAD 
 
Consider a dipole antenna illuminated by a 

plane wave with amplitude Ei = 1 V/m, incident 
angle 50i and suited 0.01 m away from a 

lossy ground ( dBnr 10,10   ). This antenna is 

centrally loaded to a nonlinear conductance with 
following )( vi   characteristic,  

34
75

1
vvi   .                           (5) 

Now substituting the predicted outputs (MoF), 
i.e., inY  and shI , in Fig. 1 (b), and applying 

Volterra series [6] to it, the induced voltage across 
nonlinear load at frequency harmonies is 
computed. Figure 19 shows the induced voltage at 
different harmonics by two hybrid approaches. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 16. The membership functions representing 
the problem behavior for 5r , for (a) modeling 
circular movement and (b) modeling partial phase. 
 
Table I compares the run-times of the two hybrid 
approaches. As it is seen, the run-time by proposed 
hybrid approach is considerably reduced. 
Meanwhile, the run-times by the proposed model 

in Table I is valid after the effect of ground 
parameters by MoF is extracted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17. The predicted induced current (mA) for 

10r  by new membership functions for (a) real 
part (mA) and (b) imaginary part(mA).  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Fig. 18. Center coordinates and radius of the new 
fitted circle versus 

r . 
  
Table I. Comparing run-times of the two hybrid 
approaches for computing the induced voltage at 
different frequency harmonies. 
 

Method 
 

Structure 

MoF 
+ 

Volterra 

MoM 
+ 

Volterra 
Problem in 
free space 

sec3.0  sec34

Problem over 
ground 

sec45.0  min4.5
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Fig. 19. Computed induced voltage (mV) at 
different harmonies by the two hybrid approaches 
for (a) real part (mV) and (b) imaginary part (mV).  
 

V. CONCLUSION 
In this paper, a combined MoF-Volterra model 

was proposed for analysis of nonlinearly loaded 
dipole antenna above imperfect ground so as to 
remove complex and repetitive computations. In 
this method, the input admittance and the induced 
current of the dipole antenna based upon the fuzzy 
inference approach was separately predicted and 
Volterra series was then used to compute the 
induced voltage at different harmonies. As a 
result, an efficient hybrid model is achieved.  
Analyzing nonlinearly loaded dipole array 
including mutual coupling effects is another study 
that can be carried out similarly. 
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