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Abstract ─ In this paper, new unconditionally-
stable meshless methods based on different split-
step methods are proposed. Moreover, comparison 
of the phase velocities of two different split-step 
meshless methods and that of alternative-
direction-implicit meshless (ADI-ML) method is 
presented. Here we show how employing split-
step (SS) technique using radial point interpolation 
meshless (RPIM) method results in an 
unconditionally stable scheme. Symmetric 
operators and uniform splitting are utilized 
simultaneously to split the classical Maxwell’s 
matrix into four and six submatrices. Also, for 
more accurate approximations Crank-Nicolson 
(CN) scheme that is a fully implicit scheme has 
been applied for implementation of these schemes. 
It has been demonstrated, these proposed methods 
produce even more effective unconditionally 
stable responses than those of alternating-
direction-implicit meshless time-domain ADI-
MLTD methods. Eventually, in order to prove the 
advantage of the proposed method, a comparison 
has been made between these novel meshless 
methods and their finite-difference counterparts. 
More smoothed phase velocities in proposed 
meshless methods imply a reduction in dispersion 
error in comparison with their analogous cases in 
finite-difference time-domain (FDTD) method. 
  
Index Terms - Meshless methods, phase velocity, 
radial basis function (RBF), split-step (SS), and 
unconditionally stable. 

I. INTRODUCTION 
Over two recent decades special attention has 

been allocated to solve Maxwell’s curl equations 
in time-domain. The main reason can be attributed 
to the unique capability of time-domain in solving 
ultra wide band (UWB) problems in only a single 
run and also modeling medium, which possesses 
nonlinear properties or/and consists of different 
materials and consequently different permittivity 
coefficients. Unfortunately, if the geometry of the 
problem domain is too complicated, demanding 
high resolution, dependency of time step size on 
the smallest space step leads in a time-consuming 
simulation process that is undesirable [1].  

Meshless methods have newly been proved to 
be appropriate alternatives to the finite-element 
(FE) methods, due to their property of avoiding 
meshing and remeshing, in addition to the 
capability of effective treatment of complicated 
geometries [2]. Using meshless methods, it is 
simply possible to locate more nodes in the 
regions that have fast variations of fields and this 
way capture these variations to ameliorate the 
accuracy. On the other hand, in the regions fields 
have slow changes fewer nodes can be located that 
is so economical in aspects of CPU usage time and 
the memory needed [3]. Amidst the diverse 
meshless methods, the radial basis function (RBF), 
which brought forward by Kansa [4] in 1990, is 
the most prevailing technique in solving partial 
differential equations (PDEs) due to its accuracy, 
consistency and ease of implementation [5]. 
Applying RBF in meshless methods, unknown 
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functions of PDEs or integral equations are 
interpolated at the scattered nodes and point 
matching method is applied to the equation at the 
collocation nodes [6]. 
 As mentioned before, choosing small time-
step size leads in a time-consuming simulation 
process that is not desirable. The possibility of 
choosing larger time-step size helps to reduce the 
computational and simulation time, that is why 
searching for unconditionally stable schemes that 
permit several order larger time step size have 
been the aim of many studies and researches 
lately. Using meshless methods to solve time 
domain electromagnetic problems with large time 
steps, acquire advantages of both meshless and 
unconditionally stable methods simultaneously. 
Recently an unconditionally stable method based 
on leapfrog alternating-direction-implicit scheme 
using radial point interpolation meshless (RPIM) 
method in three-dimensional (3-D) has been 
presented in [7] that outperforms the LOD-RPIM 
method in terms of computational effort [8]. In 
2011, a new unconditionally stable scheme based 
on (RPIM) method using the weighted Laguerre 
polynomials has been introduced in [3]. Through 
this technique, which is marching-on-in-degree 
method instead of marching-on-in-time one, the 
time step is used only to calculate the Laguerre 
expansion coefficients of sources done only at the 
start of the computations. Thus, the stability is not 
affected by the time step size any more.  
 Here, the split-step scheme, which divides a 
complete time step into several identical sub steps, 
for example 6 sub steps (6 SS), has been chosen to 
reach an unconditionally stable meshless method. 
Using uniform splitting operators in a special way, 
which explained later, 6 SS and 4 SS have the 
same formulations but different coefficients. To 
clarify the proposed technique, 6 SS-MLTD 
discussed in details and the same goes for 4 SS-
MLTD scheme.  
 

II. CONSTRUCTION OF SPLIT-STEP 
TECHNIQUE 

 Dealing with 6 SS-MLTD, for each time step 
we need only to advance six one-dimensional (1-
D) equations, permitting high computational speed 
together with unconditional stability. Here for 
simplicity a TEz wave is considered in order to 
implement the proposed method. It is completely 

clear that this simplification does not affect the 
generality of the method adversely. 
 
A. Split step technique 

According to the explained situation Maxwell’s 
equations can be written down in matrix form as, 

ሬԦݑ߲
ݐ߲

ൌ        (1)			ሬԦ.ݑ	ۻ

where the fields' vector and Maxwell’s matrix has 
considered as, 
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while µ and ɛ are the permeability and permittivity 
of the medium, respectively. As mentioned before, 
here 6 SS-MLTD method is explained completely 
and 4 SS-MLTD method can be inferred from this 
procedure. 
 

B. The split-step meshless methods 
At first, symmetric operator and uniform 

splitting technique are applied to disintegrate the 
matrix M into six components while matrix Ax and 
matrix Ay illustrate spatial derivatives in the x- and 
y-directions, respectively 
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Exploiting the split-step technique, in this work we 
consider this permutation for these six sub-matrices, 
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Here it is worth mentioning that there is 
possibility of leading to unconditionally stable 
schemes for other permutations of these sub-
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matrices just like the FDTD counterparts of this 
technique [9]. Hence, the time step size is divided 
into six identical sub-steps. These sub-steps 
produce some intermediate solution that are 
nonphysical and just help to reach more accurate 
results [4]. At the bottom, two of these equations 
present successive odd and even sub-steps, 
respectively, 

 
ሬԦݑ߲
ݐ߲

ൌ 6. ൬
௫ۯ

3
൰ݑሬԦ	,		 ݐ		 → ݐ ൅ 1 6⁄ . (6-a)

ሬԦݑ߲
ݐ߲

ൌ 6. ൬
௬ۯ

3
൰ ,	ሬԦݑ ݐ ൅ 1 6⁄ → ݐ ൅ 2 6⁄ . (6-b)

As time marches these equations repeat for odd 
and even time sub-steps.  

Here in right hand side (RHS) of the equations 
we use Crank-Nicolson (CN) scheme, which is 
unconditionally stable for more accurate results 
[10]. In this scheme spatial derivatives replace 
with the average value of two adjacent moments of 
the spatial derivatives. This way we get these 
equations for two odd and even successive sub-
steps, respectively 
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Now in the next stage these equations are 
expressed in meshless method. Before 
implementation of these formulations in meshless 
method there is a brief explanation about this 
technique. 

 
III. THE CONVENTIONAL RPIM 

METHOD 
A. Equation formatting 
     Here Maxwell’s equations have been 
discretized through RBF method. In RPIM 
methods the value of the field variable u(x) is 
interpolated using the value of the field nodes 
those are enclosed by the encompassing of the 
support domain of arbitrary point x, as described 
in [2]. If we assume x = (x,y)T to be the arbitrary 
point at which u(x) is to be approximated, desired 
unknown can be achieved using the following 
equation, 

  

ሻܠሺݑ ൌ෍ݎ௡ሺܠሻ
௡

௜ୀଵ

ܽ௡ ൅෍݌௠ሺܠሻ
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௝ୀଵ

ܾ௠. (8)

while n is the number of nodes surrounded by the 
support domain of arbitrary point x=(x,y)T, rn(x) is 
the radial basis function, pm (x) is the monomial 
basis function, an and bm are coefficients yet to be 
determined. Since its derivatives are different from 
the original function only in a constant coefficient 
and thus more efficient in mathematical handling, 
the Gaussian function is selected as the radial basis 
function, 
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where rmax and (xi,yi) describe the diameter of the 
support domain corresponding to the arbitrary 
point x, and location of ith node within it, 
respectively. Here c represents the shape 
parameter of the Gaussian radial basis function 
that controls the decaying rate of the function. 
 

B. Choosing shape parameters 
      Shape parameters are so influential in basis 
functions and consequently the results of supposed 
electromagnetic problem that they also called 
control parameters. Basically, seeking the best 
shape parameters maintaining a good balance 
between accuracy and stability, relies on trial and 
error that is a costly and time consuming process. 
In reality, the freedom to choose shape parameters 
is not a positive point [11]. Up to now, there has 
not any calculable way to find the best shape 
parameters, easily, and thus choosing the optimal 
shape parameters is an attractive research area. In 
this paper rmax chooses equal to the size of space 
step (ΔS) and another shape parameter, i.e., c, 
finds by trial and error to give the best practical 
results in accordance with the electromagnetic 
fields propagation in the time domain and desired 
cut-off frequency. 

 
IV. NUMERICAL EXPERIMENT AND 

DISCUSSION 
      As mentioned, we consider a TEz 2-D wave 
propagating in a homogeneous, linear, isotropic 
and lossless medium. Here a 1 cm × 1 cm cavity 
filled with air and terminated with perfect electric 
conductor (PEC) boundaries has been selected in 
the x-y plane. Thus, in order to have symmetric 
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excitation, a magnetic current density in the form 
of modulated Gaussian pulse function has been 
exploited as, 
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For simplicity it is supposed that a = t/6 and b = 
t/6. With the definition of E-nodes and H- 
nodes at the same location and using the central 
difference scheme to approximate the time 
derivatives, the field variables in Maxwell’s curl 
equations can be approximated as follows: 
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For the second sub-step, 
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It is completely clear that other odd and even sub-
steps have the same formulations, but different 
time intervals. Namely, this procedure repeats for 
the other four remaining sub-steps, respectively. 
This way the other update equations can be 
attained analogously. It is worth mentioning that in 
all simulated schemes, space step size is selected 
ΔS = 0.5 mm. According to the dimensions of the 
supposed cavity, there are 2121 nodes under 
scrutiny. Based on intrinsic difference between 

meshless and finite-difference methods under 
stipulated conditions, there are 2020 cells in 
finite-difference methods. Number of unknowns in 
all FD-TD and ML-TD methods is equal to the 
number of cells and nodes, respectively. The 
subtle point here that is worth pondering is 
multiplying time sub-steps in ADI-MLTD, 4SS-
MLTD, and 6SS-MLTD methods by 2, 4, and 6, 
respectively. Field values at these sub-steps leads 
to intermediate solutions those have no physical 
meaning and just used to update the field value 
variations for the next sub-steps. To analyze the 
assumed problem, the current source excites the 
cavity at its center.  
 Tables 1, 2, and 3 show the simulation results 
of the cavity analysis for its dominant mode cut-
off frequency. Acceptable variations of cut-off 
frequency and also stability of the electromagnetic 
field in time-domain by increasing time step size 
reveal that split-step meshless time-domain 
methods (4SS-MLTD and 6SS-MLTD methods) 
are unconditionally stable. Moreover in general, 
6SS-MLTD method shows more accurate results 
for cut-off frequencies while increasing the time 
step size in comparison with 4SS-MLTD method 
and even ADI-MLTD method.  
 
Table 1: Simulation results of cavity analysis for 
its dominant mode cut-off frequency and CPU 
time by ADI-MLTD method. 

Time-
step size 

Time sub-
steps 

number 

Cut-off 
frequency 

TEz10 (GHz) 

Relative 
error 
(%) 

CPU 
time 
(sec) 

߬ 4730 15.421 2.806 251.1642 

2߬ 2365 15.642 4.280 129.6259 

4߬ 1183 15.834 5.560 68.2512 

6߬ 788 15.124 0.827 48.076 

8߬ 591 15.476 3.173 37.746 

 
Table 2: Simulation results of cavity analysis for 
its dominant mode cut-off frequency and CPU 
time by SS4-MLTD. 

Time-
step size 

Time sub-
steps 

number 

Cut-off 
frequency 

TEz10 (GHz) 

Relative 
error 
(%) 

CPU 
time 
(sec) 

߬ 9461 15.156 1.04 102.435 

2߬ 4730 15.184 1.227 55.066 

4߬ 2365 15.145 0.967 31.270 

6߬ 1577 15.265 1.767 23.004 

8߬ 1183 15.462 3.08 19.016 
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Table 3: Simulation results of cavity analysis for 
its dominant mode cut-off frequency and CPU 
time by SS6-MLTD. 

Time-
step size 

Time sub-
steps 

number 

Cut-off 
frequency 

TEz10 

(GHz) 

Relative 
error 
(%) 

CPU 
time 
(sec) 

߬ 14191 15.141 0.94 591.410 

2߬ 7096 15. 162 1.08 411.996 

4߬ 3547 15.158 1.053 288.447 

6߬ 2365 15.214 1.427 102.463 

8߬ 1773 15.248 1.653 79.488 

 
In this paper, variation of phase velocity in 

different directions, which is considered as the 
main source of dispersion error is disserted.  Phase 
velocity can be found via vp = ∆S/∆t, while ∆S is 
the displacement of an arbitrary point with a 
specific phase of propagating wave in the time 
interval ∆t. Considering the speed of 
electromagnetic waves in vacuum, i.e., c = 3×108, 
as the criterion of measurement, the phase 
velocities in all directions are normalized dividing 
by this specific velocity. In other words, it can be 
indicated as normalized phase velocities = vp/c.  

Speaking of FDTD method, the Yee space 
lattice represents an anisotropic medium because in 
such lattice, propagation velocity is dependent on 
the direction of wave propagation, which causes 
different phase velocities in different angles of 
propagation. In more detailed words, the phase 
velocity has its maximum along the grid diagonals 
and its minimum along the major axis of the grid. 
Anisotropic phase velocity plays a key role in 
dispersion errors [12]. 

Against FDTD methods, there is not any 
closed form formula to calculate phase velocity in 
meshless methods. Facing meshless methods, 
phase velocity in different directions must be 
calculated through tracing the electromagnetic 
wave before reflecting back from the boundaries in 
different time intervals in different angels of 
propagation. This process can be done easily for 
specific angels like φ = 0º, 45º, 90º, 135º, and 180º. 
For other angels using more dense nodes it is 
possible to calculate phase velocities in other 
angels. Putting these phase velocities together and 
using interpolation, the following curves are 
deduced.  

Figure 1 illustrates the normalized phase 
velocities of different split step schemes for 

meshless and finite-difference time-domain 
methods versus wave propagation angles. Here 
PPW stands for “point per wavelength” that is 
PPW = λ/ΔS, where λ stands for wavelength. PPW 
has similar meaning to cell per wavelength (CPW) 
in finite-difference method. Moreover, Fig. 2 
shows the phase velocity of ADI-MLTD and ADI-
FDTD methods as a function of propagation 
direction. Based on Figs. 1 and 2, numerical 
experiments reveal this fact that using meshless 
methods there is not such a great difference 
between phase velocities in different directions. In 
other words, comparing these results with their 
counterparts in FDTD method [13] it can be 
concluded that modeling geometry with nodes not 
cells namely meshless methods instead of finite-
difference methods, results in more smoothed 
phase velocities in different directions and 
consequently lower dispersion  errors. It is resulted 
from changing shape parameters, the least 
dispersion error is related to optimal shape 
parameters and any variations in shape parameters 
aggrandizes dispersion errors. More investigations 
endorse this result for any rectangular cavity. In 
sense of velocity, it is completely clear that 6SS-
MLTD method outperforms 4SS-MLTD method 
and the same goes for 4SS4-MLTD proportional to 
ADI-MLTD methods. 

 
 

Fig. 1. Normalized phase velocities as a function 
of propagation angle for PPW = 41. 
 
 In these curves the smoother propagation in 
different directions, the less dispersion error there 
is in the scheme. Just like what occurred in FDTD 
method on examination of the phase velocity [10], 
ADI-MLTD method have worse anisotropy phase 
velocity than that of the four and six split-step 
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meshless methods. It means ADI-MLTD method 
has much larger anisotropy error in comparison 
with split-step methods. This fact guarantees better 
function of SS-MLTD methods than ADI-MLTD 
method. Here, all simulations are performed on an 
Intel Corei7 CPU with 4 GB RAM and 1.73 GHz. 
Memory usage in 6SS-MLTD methods is about 
51% while in 4SS-MLTD and ADI-MLTD 
methods this factor decreases to 48%. Since the 
processor has to deal with more equations, it 
seems to be logical using higher memory in 6SS-
MLTD. 

 
Fig. 2. Comparison between normalized phase 
velocities of ADI-MLTD (PPW = 40) and ADI-
FDTD.  
     

V. CONCLUSIONS 
Two different split-step meshless time-domain 

(SS-MLTD) methods have been proposed in this 
paper. 4SS-MLTD and 6SS-MLTD techniques 
perform by splitting the Maxwell’s matrix into 
four and six sub-matrices and simultaneously 
dividing the time-step into four and six equal sub-
steps, respectively. These schemes brought up in 
this paper reduce the anisotropy of phase velocity 
in different directions of propagation. In other 
words, normalized phase velocities in SS-MLTD 
methods is smoother than what it is in ADI-MLTD 
method and as a consequence this proposed 
scheme lead in lower dispersion error. 
Additionally, it was observed just like what 
occurred in FDTD method, 4SS-MLTD shows 
more smoothed changes in different direction in 
respect with 6SS-MLTD method and thus less 
adverse dispersion errors. This will lead to useful 
unconditionally stable meshless methods with low 
dispersion error.  
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