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Abstract ─ This paper proposes a semidefinite 
programming (SDP) method to form adaptive 
difference beam at subarray level. Its performance 
is investigated via computer simulations. 
Compared with loaded sample matrix inversion 
(LSMI) and constrained adaptive beam-pattern 
synthesis (CAPS). The proposed algorithm not 
only has manifest lower sidelobes in quiescent 
pattern control and sidelobe interference 
suppression, but also produces more accurate and 
deeper null in look direction when mainbeam 
interference deforms the pattern. 
  
Index Terms ─ Adaptive at subarray level, 
difference beam, low sidelobe, and semidefinite 
programming.   
 

I. INTRODUCTION 
In search-track system, antennas are usually 

required to generate sum and difference beams 
simultaneously. However, the implementation of 
two independent excitations for the sum and 
difference modes of operation is generally 
unacceptable because of the costs and complexity 
[1]. Thus, it is necessary to form the two types of 
beams at subarray level. Since the sum pattern is 
used in both signal transmission and reception, the 
most common way to solve the problem is to 
generate an optimal sum pattern and suboptimal 
difference pattern [2]. Therefore, when element 
tapering is in favor of sum beam, sidelobe 
reduction contributed by element tapering is not 
effective for difference beam. Nevertheless, it is 
desirable to obtain low sidelobes in the adaptive 
beams to aid the performance against clutter [3]. 
Moreover, difference pattern is required to have 

deep slope at boresight to improve the radar 
sensitivity [1].   

The minimum variance distortionless response 
(MVDR) is a popular algorithm used for adaptive 
beamforming. However, its high sidelobe level is 
an issue when practical sample covariance matrix 
is used [4]. The loaded sample matrix inversion 
(LSMI) [5] is a modification of sample matrix 
inversion (SMI), which suppresses sidelobes by 
adding a small value on the diagonal of the 
covariance matrix. However, there is no closed-
form solution for the optimal loading value and it 
is usually obtained by simulation trials or 
empirical experience [4]. A new projection based 
algorithm, constrained adaptive beam-pattern 
synthesis (CAPS), combines advantages of 
subspace and penalty function (PF) approaches 
[3], and its performance is similar to LSMI except 
for very low sidelobe antennas and severe 
jamming situations [6]. Another approach based 
on optimization is realized by second-order cone 
(SOC) programming [7], but a hard threshold 
needs to be preset and the proper choice of 
threshold is difficult [4]. Besides, sidelobe areas 
have to be delimited previously for optimization. 
Some research has been done on adaptive 
difference beam at subarray level in [8-9]. 
However, in [8], interests go to the influence of 
subarray configuration on adaptive sum and 
difference beam. Sidelobe reduction of difference 
beam in [9] is mainly contributed by element 
tapering, especially in quiescent pattern control, 
which rises remarkably when element tapering is 
designed for sum beam (e.g. Taylor taper). 
References [1, 2] have investigated the effects of 
subarray configuration and subarray level weights 
on optimum sum and difference pattern. Although, 
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suboptimum difference beams were achieved, they 
were aimed at non-adaptive beamforming.  

In this paper, we propose semidefinite 
programming (SDP) method to form adaptive 
difference beam at subarray level in linear array 
while Taylor tapering is applied at element level 
for sum beam. Sidelobe reduction of sum beam 
can be achieved by element tapering, thus is not 
considered here. The proposed algorithm is based 
on the thought of matching reference difference 
weights with given subarray configuration. 
Besides, we impose constraints on interferences 
suppression and null depth in look direction so that 
deep null depth and adaption are achieved. The 
feasibility and advantages of the novel algorithm 
are verified via numerical simulations.  
 

II. PROBLEM FORMULATION 
Consider a uniform linear array with 2N M  

omnidirectional antennas spaced with / 2d   , 

receiving N  narrowband signals 1( ) Ns t C 
, 

where   is the carrier wave length, as shown in 
Fig. 1. The array is assumed to be symmetrical 
about the origin. When K  signals impinge on the 

array, the thn  snapshot received data vector 
1( ) N

elex n C 
 is given by [10],  

        ( ) ( ) ( )elex n As n v n   
,                  (1) 

where ( )v n


is a noise vector, characterizing 

additive Gaussian white noise. A is the array 
manifold matrix, which is the combination of all 
possible steering vectors [10], 

 1 2( ), ( ), ( )KA a a a     ……， ,         (2) 

where ( )ka  is the steering vector for the thk  

(0 )k K  signal from k  and is defined as, 
2 1

sin
2( ) [ ] , 1

k
d N

j n
T

ka e n N
 


   
   

.     (3) 

Assume an amplitude weight vector 

 1 ...
T

M M Mw w w w    is applied at element 

level to control sidelobe for the quiescent sum 
beam. Besides, the array is divided into L  
subarrays. Sub-arraying is symmetrical about the 
array center. The subarray geometry is shown in 
Fig. 2. The element to subarray transformation 
matrix can be described by an N L  matrix [11], 

0d wT D D T   ,                       (4) 

where  
0 0D diag a   ,  wD diag w  , 0  is the 

look direction. T describes how different the array 
elements are arranged into L  subarrays [11]. Then 
the interferences plus noise received data and the 
L L disturbance covariance matrix at subarray 
level can be given by equations (5) and (6), 
respectively, 

H
sub d elex T x 

                              (5) 
H H H

sub d ele ele d d ele dR T E x x T T R T   
 

.      (6) 

In practice, the covariance matrix eleR is unknown 

and we replace it with its maximum likely-hood 
estimation [6], 

   
1

1ˆ
sapN

H
ele ele ele

nsap

R x n x n
N 

   
, 

where sapN  is the sampling rate and 2sapN N  in 

this paper. If subw


indicates weighting at subarray 

level, then the pattern with subarray configuration 
is given by, 

       *
0

H

subf diag w T w a a         
   

 (7) 

where"  " and " " denote Hadamard product and 
conjugate, respectively.  

bore sight

d d


sind



-M -M+1 -1 1 M-1 M  
 
Fig. 1. The uniform linear array of N = 2M  
sensors. 

Mw 1 1M Nw   Niw 1w 1w Niw Mw1LM Nw  

1S iS 1iS  LS1d id 1id  Ld

 
 

Fig. 2. Linear array with subarray configuration. 
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It is known that adaptive beamforming is data-
dependent [12]. In this paper, we achieve adaption 
at subarray level. Adaptive weighting is calculated 
with the output from all subarray channels. A 
general block diagram of adaptive beam former is 
shown in Fig. 3. 

*
1w *

2w *
1Lw 

*
Lw

( )f 
 

 
Fig. 3. Adaptive beamforming block. 
 
A. Loaded sample matrix inversion 

In reference [9], the steering vector of 

difference beam at subarray level  0s 


is given 

by, 

   0 0
H

ds T g a     
  

 ,               (8) 

where [ 1,..., 1, 1,...,1]T

M M

g   
 

. 

The adaptive weighting at subarray level based 
on LSMI [6] is, 

   
1

0
ˆ

LSMI subw R I s 


  
.         (9) 

I denotes the identity matrix and  is a positive 
constant, we choose 24  for simplification [6], 

where 2 is the power of noise. 
 

B. Constrained adaptive beam-pattern 
synthesis 

The adaptive weighting based on CAPS 
algorithm [6] is, 

   1H H
CAPS SMI SMIw w X X CX X C w s



           (10) 

where 1 1ˆ ˆH
SMI sub subw R s s R s 

  
   

   
. The columns 

of the matrix X span the space orthogonal to  

 ,J s


. J is a unitary L K matrix with columns 

spanning the interference subspace(ISS). L  and K  
are the number of subarray channels and 

interferences, respectively. J can be estimated from 

the received data by eigen decomposition of ˆ
subR . 

After eigen decomposition of ˆ
subR , we rank its 

eigenvalues in descending order as 1 2 ...    

1 ...K K L      , and their corresponding 

eigenvectors are 1 1,... , ,...K K Lu u u u
   

, among which 

1,... Ku u
 

 span the ISS when interference to noise 

ratio (INR) is large [13]. To determine the 
dimension of ISS (i.e., to obtain K ), we use the 
Akaike information criterion (AIC) [14], 
 

 

   

  

1

1

1

2 2

2ln
1

ˆ min , 0,1,..., 1

sapL
L k

i
i k

L

i
i k

L k N k L k

AIC k

L k

K AIC k k L







 

 

   
 
  
 
  

  




. 

(11) 
 

Overestimation of dimension of ISS causes 
signal to interference and noise ratio (SINR) loss 
while underestimation results in insufficient 
suppression of interferences. Incorrect estimation 
may occur in complicated scenarios or the 
situations where noise power of each subarray 
channel differs considerably. Diagonal loading can 
improve the robustness of AIC against errors [6]. 

Therefore, we replace ˆ
subR  with ˆ 4subR I  in our 

simulation. C  is a directional weighting function, 
and C I  for no directional weighting, thus the 
CAPS weight vector used in this paper is [6], 

 [ , ]CAPS J s SMIw s P w s
   

  
,         (12) 

where [ , ]J sP

 denotes the projection onto space 

 ,J s


. 

 
III. THE PROPOSED METHOD 

There are some algorithms such as Taylor 
tapering, Dolph-Chebyshev synthesizing, for low 
sidelobe sum pattern synthesis [15]. In terms of 
difference pattern, Bayliss weighting is used to 
achieve low side lobes [16]. Despite the fact that 
Taylor tapering is exploited as element excitation 
for sum beam, we may try to minimize the 
difference between refw


 and w subT w


with 

constraint of interference suppression, where 
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refw


is the optimum difference excitations for 

sidelobe reduction. w subT w


 is the equivalent 

element weight vector with subarray 
configuration, and ( )wT diag w T 

. subw


 is the 

weight vector at subarray level, which we are 
looking for. In addition, we can impose constraints 
on the null in look direction for difference beam 
synthesis. 

Suppose Taylor tapering Taylorw


 is applied at 

each element for sumbeam forming. To form 
adaptive difference beam at subarray level, we 
design an optimization problem, given as follows, 

 
   

2

2

0

arg min

. . : 0

0,

1,2,...,

sub
sub w sub ref

w

H

d sub

H

d sub k

w T w w

s t T w a

T w a

k K L



 

 

 

 



  

 

 
,           (13) 

where 
2

x


is the Frobenius norm of vector x


. k  

denotes the direction of the thk interference. 
Interferences are assumed incoherent with each 
other. However, in general, we have no prior 
information of interferences, i.e., k  is unknown. 

Nevertheless, in the situation of strong 
interferences and small signal, the optimal weight 
vector tends to be orthogonal to the interference 
subspace [6]. Thus, we can modify equation (13) 
as, 

           

2

2

0

arg min

. . : 0

0

sub
sub w sub refw

H

d sub

H
sub

w T w w

s t T w a

w J

 

  

 



  

 


.            (14) 

Assume   2
2|| ||w refP v T v w   

, 1Lv C  . It can 

be easily shown that ( )P v


 satisfies the following 

inequality for all 0 1  , 

     (1 ) (1 )P v P P v         
  (15) 

where 1LC  . Thus, the objective function in 
equation (14) is convex [17]. As its constraint 
functions are affine, equation (14) is a quadratic 
program [17]. We can introduce a non-negative 
auxiliary variable t  that serves as an upper bound 
on the objective [18], 

 
,

0

2

2

min

. . : 0

0

subt w

H

d sub

H
sub

w sub ref

t

s t T w s

w J

T w w t

  



 



 



 

.              (16) 

Equation (16) satisfies the standard form of 
second-order cone programming [17]. When t  
reaches its minimum, we get the optimal subw


. 

SDP is a subfield of convex optimization 
concerned with the optimization of a linear 
objective function over the intersection of the cone 
of positive semidefinite matrices. The typical form 
of SDP is given by [18], 

0 1 1

min

. .

... 0

T

p p

c x

s t Ax b

F x F x F


   

 


,        (17) 

where 1 2[ , ,..., ]T
px x x x is the vector to be 

optimized, and 0 1, ,..., pF F F are semidefinite 

matrices with the same order. The inequality sign 

  0F x  means that  F x


is positive 

semidefinite.  
We can reformulate the nonlinear convex 

problem of equation (16) as the semidefinite 
programming of equation (18) in the variables 

subw


and t [18], 

 

 

,

0

min

. . : 0

0

0.

subt w

H

d sub

H
sub

N N w sub ref

H

w sub ref

t

s t T w s

w J

I T w w

T w w t



  



 
  

  



 



 

 

 . (18) 

 
This semidefinite program has dimensions 

1m L  and n N . The number of iterations 
required to solve a semidefinite program grows 

with problem size as ( )O n  and it requires 
2( )O m n operations per iteration [18]. Several 

specialized tools are available to solve it such as 
SeDuMi [19], YALMIP [20], etc. YALMIP is 
used in this work. However, YALMIP called 
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SeDuMi as external solver in our simulation. It 
usually converges after 10~13 iterations. 

 
IV. SIMULATION RESULT 

Let us consider a uniform linear array of 102 
antennas with half-wavelength spacing. Look 
direction is set as 0 = 0o. The subarray 
configuration is [22, 8, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 8, 
and 22], so that equal noise levels in all subarray 
channels are achieved approximately. We compare 
three approaches, LSMI, CAPS and SDP in 
scenarios of interference free, mainbeam 
interference and sidelobe interferences. In all 
simulations, a Taylor tapering with constrained 
side lobe level (SLL) = 30 dB and 8n   is 
impinged on each element, and difference beam is 
formed at subarray level digitally. INR is set to 30 
dB. In SDP, Bayliss tapering with SLL = 30 dB 
and 8n   is set as the reference weights refw


. 

Signal of interest is neglected since it is usually 
possible to form the interference covariance matrix 
with signal absent in radar applications [21]. 

Figure 4 shows the adaptive patterns in the 
absence of interference obtained by the three 
algorithms. Although LSMI and CAPS suppress 
SLL effectively in [11], they deteriorate when we 
form difference beam at subarray level instead of 
sum beam. Nevertheless, SLL is remarkably low 
with SDP. Null depth in look direction, expressed 
as 0N , and SLL of each pattern are given in Table 

I. 

 
 
Fig. 4. Normalized pattern in absence of 
interference (noise only). 

Figure 5 demonstrates adaptive patterns in the 

presence of one main lobe interference from1.5 . 
SDP performs slightly better in sidelobe control, 
but it forms deep null exactly in look direction. 

Meanwhile, the other two have 0.1 deviation 
caused by disturbance of the main lobe 
interference. 

  
 

Fig. 5. Normalized pattern with one main lobe 

interference at 1.5 . 
 

Figure 6 illustrates adaptive patterns in 
presence of two sidelobe interferences in direction 
of 5   and 10 . Three algorithms can suppress 
interference effectively, lower than -67 dB. 
However, compared with LSMI and CAPS, SDP 
reduces sidelobe dramatically and has a deeper 
null in look direction. 

 
 

Fig. 6. Normalized pattern with two side lobe 

interferences at 5  and 10 . 
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From Table I, we can see that in situations of 
noise only and sidelobe interferences, SDP 
outperforms the other two algorithms in side lobe 
reduction and null depth in look direction 
manifestly. When the pattern is disturbed by main 
lobe interference, SDP can still maintain accurate 
deep null in look direction. This is due to the first 
equality constraint in equation (18). 

Figure 7 and Table II depict the comparison of 
SINR of each approach versus  . LSMI has the 
highest SINR. SDP has a small SINR loss, 0.68 
dB compared with LSMI and 0.49 dB compared 
with CAPS, as shown in Table II. Thus, slight 
SINR loss is the cost of using SDP. 

 
 
Fig. 7. SINR of three methods, interference at50. 

 
In our simulations, patterns using LSMI and 

CAPS differ slightly, which agrees with the 
conclusion in [6]. Although Taylor tapering is 
used at element level both in [6] and this paper, 
sum beam is formed at subarray level in [6] while 
difference beam is formed in this paper. In this 
case, SDP performs considerably well in 
suppressing sidelobe and producing accurate deep 
null in look direction. 

As discussed in section III, the computational 
complexity is closely related to the size of the 
array and its subarrays. Thus, when we utilize the 
proposed algorithm to compute adaptive weights, 
the size of array and the amount of subarrays 
should be taken into consideration according to the 
practical requirement of real-time. 

Table I: Null depth in 0 and SLL for LSMI, 
CAPS, and SDP [dB]. 

 
absence of 

interference 
Mainlobe 

interference 
sidelobe 

interference 

0N SLL 0N  SLL 0N SLL 
LSMI -24 -11.1 -21* -11.0 -24 -12.1 
CAPS -328 -12.8 -19* -10.7 -44 -12.5 

SDP -134 -23.4 -135 -11.6 -135 -23.2 
*: denoting 0.1o  deviation. 
 
Table II: SINR and SINR Loss for LSMI, CAPS, 
and SDP [dB]. 

 SINR SINR Loss 
LSMI 20.17 +0.68 
CAPS 19.98 +0.49 
SDP 19.49  

 
V. CONCULSIONS 

In this paper, a semidefinite programming 
method is proposed to form adaptive difference 
beam at subarray level when element excitations 
are for optimum sum pattern. The proposed 
method realizes sidelobe reduction in adaptive 
difference beamforming via optimization. 
Compared with LSMI and CAPS, the proposed 
method has the merits of reducing sidelobe 
considerably and producing an accurate deep null 
in look direction. The aforementioned merits of 
the proposed method have been verified by 
computer simulations. Meanwhile, it suffers from 
a small SINR loss, which is the cost of SDP 
algorithm. Thus, a tradeoff should be considered 
in practical situations. 
 

ACKNOWLEDGMENT 
This work was supported by a grant from the 

National Natural Science Foundation for Young 
Scholars of China (Grant No.61101094). 

 
REFERENCES 

[1] L. Manica, P. Rocca, A. Martini, and A. Massa, 
“An innovative approach based on a tree-
searching algorithm for the optimal matching of 
independently optimum sum and difference 
excitations,” IEEE Trans. Antennas Propagat., vol. 
56, no. 1, Jan. 2008. 

[2] D. A. McNammara, “Synthesis of sub-arrayed 
monopulse linear arrays through matching of 
independently optimum sum and difference 
excitations,” Proc. Inst. Elect. Eng. H, vol. 135, no. 
5, pp. 371-374, 1988. 

800 ACES JOURNAL, VOL. 28, No.9, SEPTEMBER 2013



[3] G. M. Herbert, “A new projection based algorithm 
for low sidelobe pattern synthesis in adaptive 
arrays,” Radar 97, publication no. 449, pp. 14-16, 
Oct. 1997. 

[4] J. Wang, R. L. Krlin, and X. Lu, “Sidelobe control 
using optimization methods in adaptive 
beamforming,” Adaptive Antenna Arrays: Trend 
and Applications, Berlin, July 2004. 

[5] B. D. Carlson, “Covariance matrix estimation 
errors and diagonal loading in adaptive arrays,” 
IEEE Trans. Aerospace and Electronic Systems, 
vol. 24, no. 4, pp. 397-401, 1988. 

[6] U. Nickel, “Principle of adaptive array 
processing,” Advanced Radar Systems, Signal and 
Data Processing, no. 5, pp. 1-20, 2006. 

[7] J. Liu, et al, “Adaptive beamforming with 
Sidelobe control using second-order cone 
programming,” Pro. Of IEEE Sensor Array and 
Multichannel Signal Processing Workshop, pp. 
461-464, Aug. 2002. 

[8] U. Nickel, “Subarray configurations for digital 
beamforming with low sidelobes and adaptive 
interference suppression,” Proc. IEEE 
International Radar Conference, Alexandria, USA, 
pp. 714-719, May 1995. 

[9] H. Hang and Z. Hao, “Study on ADBF for 
difference beam at subarray level with sidelobe 
level,” IEEE International Symposium on 
Microwave, Antenna, Propagation, and EMC 
Technologies for Wireless Communications, 2007. 

[10] R. M. Shubair, “Improved smart antenna design 
using displaced sensor array configuration,” 
Applied Computational Electromagnetics Society 
(ACES) Journal, vol. 22, no. 1, pp. 83-87, March 
2007. 

[11] P. Lombardo and D. Pastina, “Pattern control for 
adaptive antenna processing with overlapped sub-
arrays,” IEEE In. Radar Conference, pp. 188-193, 
Sep. 2003. 

[12] A. Kulaib, R. Shubair, M. Al-Qutayri, and J. Ng,  
“Robust localization techniques for wireless 
sensor networks using adaptive beamforming 
algorithms,” 27th Annual Review of Progress in 
Applied Computational Electromagnetics Society, 
pp. 843-848, Williamsburg, Virginia, March 2011. 

[13] R. O. Schmidt, “Multiple emitter location and 
signal parameter estimation,” IEEE Trans. 
Antennas Propagat., vol. 34, no. 3, pp. 276-280, 
March 1986. 

[14] M. Wax and T. Kailath, “Detection of signals by 
information theoretic criteria,” IEEE Trans., 
Acoustics, Speech and Signal Processing, pp. 387-
392, Apr. 1985. 

[15] R. C. Hansen, “Array pattern control and 
synthesis,” Proceedings of IEEE, vol. 80, no. 1, pp. 
141-151, January 1992. 

[16] T.-S. Lee and T.-K. Tseng, “Subarray-synthesized 
low-side-lobe sum and difference patterns with 
partial common weights,” IEEE Trans. Antennas 
Propagat., vol. 41, no. 6, June 1993. 

[17] S. Boyd and L. Vandenberghe, Convex 
Optimization, New York, 2009.  

[18] L. Vandenberghe and S. Boyd, “Semidefinite 
programming,” SIAM Review, vol. 38, no. 1, pp. 
49-95, March 1996. 

[19] J. F. Strum, “Using SeDuMi 1.02, MATLAB 
toolbox for optimization over symmetric cones,” 
Optimization Method and Software, vol. 11, pp. 
625-653, 1999. 

[20] J. Löfberg, “YALMIP: A toolbox for modeling 
and optimization in MATLAB,” Proceedings of 
IEEE international symposium on Computer 
Aided Control Systems Design, Taipei, Taiwan, 
China, pp. 284-289, Sep. 2004. 

[21] L. Rees, J. Mallett, and L. Brennan, “Rapid 
convergence rate in adaptive arrays,” IEEE Trans. 
Aerospace and Electronic systems, vol. 10, no. 6, 
pp. 853-863, Nov. 1974. 

 
 
 

Jia XU received her B.Eng. degree 
in Electronics Engineering (EE) 
from University of Electronic 
Science and Technology of China 
(UESTC) in 2011. Since then, she 
has been working towards her 
Master’s degree in UESTC. Her 
research interests include adaptive 

beamforming and wideband beamforming. 

XU, ZHANG, SHEN: ADAPTIVE DIFFERENCE BEAM WITH LOW SIDELOBES 801




