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Abstract

A method of moment code for computing the ra-
diation from arbitrarily oriented narrow slots or
straight dipoles in the vicinity of a two dimensional
(2D) multi-region composite cylinder of arbitrary
cross-sectional shape and infinite extension in the z-
direction is developed. The dipoles and the slots are
represented by known equivalent electric and mag-
netic currents distributions, respectively. The finite
extent of the sources are included by Fourier trans-
forming the equivalent electric and magnetic source
currents along the infinite cylinder axis. The com-
puted radiation patterns are compared to results
computed by other methods and measurements. Ra-
diation patterns are predicted both in the elevation
and azimuthal planes.

1 Introduction

Antennas consisting of three-dimensional (3D) radi-
ating elements (sources) and two-dimensional {2D)
structures (cylinders of infinite extent) can be an-
alyzed by using a spectrumt of two-dimensional so-
lutions (S2DS), as described in [1]. Such antennas
are for instance dipoles at long and narrow ground
planes, or slots cut in a cylindrical surface. Generally,
any antenna consisting of slots or dipoles in or in the
vicinity of 2D structures of arbitrary cross-sectional
shape and material combination can be analyzed by
the S2DS technique. The purpose of the present pa-
per is to present the formulation and some selected
results for this general case.

The most significant part of an $2DS analysis is to
solve repeatedly the special spectral domain problem
obtained by Fourier-transforming the sources in the
z-direction of the structure. This spectral domain
problem can be interpreted as a harmonic 2D spatial

problem where the sources (and the resulting fields)
have harmonic z-variation of the form e=7*:% where
k. = 0 corresponds to the standard 2D problem. This
general harmonic 2D problem must be solved for a
large number of values of the spectral variable k; in
order to inverse transform to 3D spatial domain. The
radiation pattern, however, can normally be found di-
rectly from the 2D harmonic solution without inverse
transformation.

The harmonic 2D problem is conveniently solved
for each k, by the method of moment (MoM). Sev-
eral approaches have previously been used; the field
within baffles has been expanded in parallel-plate
modes and solved by MoM [2], the field within a vir-
tual circular cylinder around a triangular mast has
been expanded in cylindrical sector waveguide modes
and solved by MoM [3], and the induced currents on
a 2D metal structure with arbitrary cross-sectional
shape have been solved by MoM {4] with a decoupled
electric field integral equation (EFIE) [5).

In two previous papers plane wave scattering from
two-dimensional composite objects [6], and scatter-
ing from an impedance cylinder with arbitrary cross-
section under oblique plane wave incidence were ana-
lyzed [7], where the equivalent electric and magnetic
currents were soived for by pulse expansion and point-
matching. The present paper extends that work by
including equivalent electric and magnetic sources in
order to model slots and dipoles ir a two-dimensional
structure with multiple regions of perfect electric con-
ductors (PEC’s) and homogeneous and isotropic ma-
terials. The pertaining integral equations are pre-
sented and a computer code is developed.

The computer code is verified against examples
from the literature, measurements, analytic solutions
and a code for coaxial multi-layer circular cylinders.
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2 Statement of the Problem

We assume that we have a composite 2D object par-
allel to the z-axis and that 3D sources are present
in its neighborhood such as dipoles, or attached to
it such as slots or printed microstrip dipoles. It is
very time consuming to solve the radiation problem
in its present form in the spatial domain. Instead
the problem will be solved in the spectral domain as
a spectrum of 2D solutions as will be shown in Sec-
tion 3. We will assume that the equivalent current
distributions of the 3D sources are known. Asin most
practical applications of thin sources such as dipoles
or narrow slots, the equivalent electric and magnetic
current distributions, J and M can be assumed sinu-
soidal of the form

Jwo) = men(Fu= 260, (1)
- =Lf2<u<L/2

where W is an equivalent width of the source and I
is the length. The eguivalent width is much smaller
than both L and the wavelength. The variables u
and v are the local coordinates of the source and 4,
is the unit vector along the current source. After
transforming the source coordinates to the cylindrical
coordinates (p,z) and using the Fourier transform
defined by

Jok) = [ 3o a)etrds (2)
and the inverse Fourier transform as
Ip D=5 [ Iok)ea, @
27 J_ o

where k_ is the axial wavenumber. The Fourier trans-
form of the current in (2) with respect to z is

j(t, kz) = (4)
Wessa Sin(F (G — §lefrttene, if o # 90°
~ Wy cos(k.L/2)8(2) if o = 90°

L
2 < 3 cosa

where « is the angle between the source axis u and
the zy-plane, and ¢ is the projection of u in the zy-
plane. The Fourier transiormed current source writ-
ten as J(t,k;)e~7*=2 for a particular value of &, lo-
cated in the presence of the infinitely long 2D struc-
ture, can be visualized as an infinite current sheet of
width equal to the projected length of the current in
the zy-plane and parallel to the z-axis with harmonic
variations in the z-direction [1].
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Figure 1: Cross-section of a general cylinder.

Therefore, the total fields produced by these har-
monic 2D sources must be harmonic in z as well in
order to satisfy the boundary conditions on the ob-
jects [1]. For each value of k., the problem can be
considered a two dimensional problem which should
be solved an infinite number of times to cover all of
the k. spectrum, and which will be summed to get
the solution in the spatial domain. This process is
not necessary if the primary interest is the farfield
radiation patterns. For each value of k, € [—k, k],
the farfield is radiating on a cone around the z-axis
with cone angle § = arccos(k;/k), where k is the wave
number in free space. Thus, the farfield can be com-
puted directly from the spectral domain solution, i.e.
the 2D solution [1].

In this paper, the time variation e“? is implied and
suppressed throughout.

3 Formulation of the 2D Prob-
lem

Now that we have shown that the 3D sources can be
transformed to harmonic 2D sources in the spectral
domain and have transformed the whole problem to
a spectrum of 2D problems, let us describe the gen-
eral arbitrary shape of the 2D object and derive the
integral equations. The geometry and notations of
such an object are given in Fig. 1. The whole space
is divided into N-+1 homogeneous regions, V;, which
may be either dielectric regions with permittivities
¢; and permeabilities y;, or closed conductor regions.
These regions are numbered i = 0,1,2,..., N, where
i = 0 corresponds to the exterior region, i.e. free
space. Lossy materials are considered by allowing
€ and i, § = 1,2,..., N to be complex. Each region
V; is surrounded by a closed surface 5; and associ-
ated with an inward directed normal unit vector ;.
The surface interface between regions V; and Vj is



denoted as S;;,% # j- Thus, S; comprises the set of
all interface surfaces Sj;, where j represents all re-
gion numbers adjacent to region V;. Note that S5;; is
the same surface as S;;; however, the normal unit vec-
tors fi; and fi; are in opposite directions to each other
on the two surfaces. The concept of the equivalence
principle is used to derive a surface integral equation
(SIE)} formulation for 2D objects with NV + 1 homoge-
neous regions. The total fields in each homogeneous
region are denoted by Ef and Hf, ¢ = 0,1,2,...,N
for the electric and magnetic fields, respectively. Any
perfectly conducting region need not be considered
as a region because the fields are known to be equal
to zero. In the free-space region Vj, the total fields
are denoted by (E°, HO). In this paper, the exci-
tations are considered to be 3D equivalent electric
or magnetic current sources with known amplitudes
and current distributions. The electric sources are
arbitrarily located inside any number of regions to
model thin wire radiators or on the dielectric sur-
face interfaces to model printed sources. Slots are
modeled by magnetic sources on the conducting sur-
faces. From Maxwell’s equations and the equivalence
principle, one can express the fields in each region in
terms of unknown electric and magnetic equivalent
surface currents plus the fields due to the harmonic
2D sources present in the region.

According to the surface equivalence principle we
can break the original problem into a number of aux-
iliary problems that are equal to the number of non-
perfect conducting regions. To obtain the ith auxil-
iary problem the boundaries of region V; are replaced
by equivalent surface currents radiating in a homoge-
neous medium with the constitutive parameters of
region V; using electric currents for the conductor
boundaries and equivalent electric and magnetic cur-
rents for the dielectric boundaries. The electric and
magnetic currents appearing on opposite sides of a
dielectric interface in different auxiliary problems are
taken equal in magnitude and opposite in direction to
ensure the continuity of the tangential components
of the fields on these boundaries, as in the original
problem. In this procedure the fields produced by
the equivalent currents within the region boundaries
are the same as those in the original problem, while
the zero field is produced outside these boundaries.
The electric and magnetic surface currents along the
boundaries are

J=f; xH and Mi=-i;xE' onS; (5

Both J* and M* have components in both the longi-
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tudinal, %, and transverse, t;, directions, i.e.

Ji T, Ji
{M*}={M: }*{M

where the transverse unit tangent is defined by

}'E,-, on S; (6)

(7)

where fi; 18 the unit normal to S;. The currents on
the surface S; are the sum of the currents on all the
boundaries S;;, where j # i and j represents all the
region numbers adjacent to the region V;, i.e.

F=>3"J4,

Vi

t; =Z X 1

(8)

on the boundaries of region ¢

and similarly for M*. On the conductor boundaries
the magnetic current is zero. We can now obtain the
electric and magnetic fields E*(p, k) and Hi{p, k.)
due to the electric current J¥(p', k;} by using

E'(p,k:) = ~ jwA(p,k,) (9)
- wEmiVV-A (P k2)
. 1 ,
H(p, k) =;V x A'{p, k) (10)

where the magnetic vector potential A is

Aip k) = [ T k) HP (k,Ap)dl (1)
=jo—p|

The transverse wave number k, is defined as &,
\/kz — k2, Im{k,]< 0, where k; is the wave number
in region 4. The V operator used here is defined as
— jk;2 and V;= %J’c+ —86—;?
After some mathematical manipulations the electric
and magnetic fields due to the electric currents can be
expressed in operator form as shown in [7, Appendix
A]. Expressions are given for Ei(J}), Ei(Jf), EHJE),
and Ei(J:) which are each of the components of the
vector operator Ei, (J¢) for the tangential E-field
at a point p on 5;, and in the same fashion we get
Hi(JE), HL(J}), and H} (J’) for the tangential H-field
vector operator Hi,,,(J¢) , i.e.

V=9 (12)

Eln (T = [E{(T) + Ey(ID]E: (13)
+[EL(E) + E;())e
tan(37) = [H{(F) + HI(DW: + Hi ()2 (14)

The fields due to the magnetic current M (p’, k;) can
be obtained by using duality [8, Ch.3,Sec.3-2]. The
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boundary conditions must now be enforced on each
boundary of the object. The boundary conditions
are:

[Etan (Jl) + Etun (Jt) (15)
Ejan (M) + Eim(M’)]
[Etr:m (JH70) — By, (3770)
fon (M) EJ A(MF™)] on Sy
and |
—II., X [I_Ita.ﬂ(‘].') + Htan (Ji) + (16)

Hi,, (M) + H,,(M")]
= f; x [Hi, (Jbm) — Hf (377) +
H:an (Mi,inc) _ Htan(Mj,:nc)]
on S5, just inside V;
If the boundary S;; is a conducting boundary and

the region V; is a conducting region equations (15)
and (16) become

tan J‘) - £Eta.n. J:,znc) + Etan (NII mc)]
on S;;

(17)

and
—1i; X I_I;lan(']i) =
B; X [Hi,, (J77) + Hi,p (MP70)]
on S;;, just inside V;

(18)

Substituting ¢perators for the fields into the expres-
sions for the boundary conditions yields the integral
equations. Only one of equations {17) and (18) is
needed to solve for the unknown currents. If equa-
tion {17} is used on the perfect electric conductor
(PEC) with (15) and (16) on the dielectric bound-
ary, the formulation is called the E-PMCHW formu-
lation. If equation (18) is used just inside the PEC
boundary with (15} and (16) on the dielectric bound-
ary, the formulation is referred to as H-PMCHW.
The C-PMCHW formulation can be obtained if equa-
tions (17) and (18) are combined and used as one
equation together with (15) and (16), [9]. Follow-
ing the method of moments, the object contour C
is divided into N linear segments with length ACY,
i=12.,N

ZEHZE IS+ Iy VYD

SIS O O TR e
'Y't';:?ﬁ + Y;E:J Y"Ja Y"JSJ Z’Jr" — F]-;Z;ih’
Vi LYE VEeYS0 —Lzgio Lzp
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as in [9], and each current component is expanded
into N pulse basis functions . In equation form,
the unknown currents can be expressed as

N
F=) ("t +I'8)p onallS;  (19)
I=1
and
. N+Ng
M = Z (MFE; + Mb ’i)p on dielectric (20)
I=N+1 boundaries

where Il'*, Il M} and M} are the unknown electric
and magnetic current coefficients. The pulse func-
tions is 7 = 1 on the subdomain AC' and zero else-
where. Ny is the number of segments on the dielectric
boundaries. Substituting (19) and (20) into the oper-
ators defined in 7, Appendix A] and then substitute
the operators in (12) to (15) and satisfy (12) to (15)
at the match point (middle of the segments), the in-
tegral equations reduce to a matrix equation of order
2(N + Nd), which can be written in the form of a
matrix equation (21).

The elements of these submatrices are given in
[7, Appendix B] where Z"' and Y"’” dencte ma-
trix elements obtained from the operators E}, (Jg)
and H}(J}), respectively, on the surface S;; from
the region ¢. Therefore, the first suffix of the sub-
scripts refers to the field component and the second
suffix of the subscript refers to the current compo-
nent.  The first pair of the superscripts refers to the
surface boundary {7 and the second suffix of the su-
perscripts refers to the region number ¢ or j. This ma-
trix is built assuming all the boundaries are dielectric
boundaries, but on the conductor parts the columns
and the rows that are corresponding to the magnetic
currents and the magnetic field, respectively, which
are in the third and forth columns and rows, respec-
tively, must be removed and in the first and second
colurmns of (21) the parts that are corresponding to
conducting regions i or j must be forced to zero.

The quantities I, I, M¥, and M, i are the un-
known expansion coefficients of the electnc and mag-
netic currents, respectively. The right side columns
are the excitation vectors, where V7% V7% I3 and
I}”* denote the incident electric and magnetic fields,

-l.n: sine

Yy ) rpiq [vEET - viEe
fur ey Ve ¥4

Y:;J,’l + Y1J,J I;:j V"J' v;sj,g e (21)
-1z - 1 Lz (Mo Ii.f,i"“ Ii:'.j"“

o % z

1 'j,i 1 J J 17 .- cim inc



respectively, on the surface §;; due to all electric and
magnetic sources in region :.

4 Farfields

Once the moment method matrix equation is solved
the farfields due to the currents on the outer surface
boundary and the current sources in the exterior re-
gion can be computed. The field will be along a cone
of half angle & = arccos(k,/kg) around the structure.
The farfield operators for electric and magnetic sur-
face currents in the (p,k;)-domain are given in [1].
Our surface currents are expressed in their local co-
ordinate system (#',#, #) and since farfields are most
conveniently expressed in a spherical coordinate sys-
tem, we need to do a coordinate transformation. Us-
ing a one-point midpoint rule for the integration, the
result is:

k e—ikr
4 r
[ﬂoZ(Jm (&5

No+MNg ‘|

Eg=—-j— (22)

ji'“’fkﬂ) TR ACH

+ 3 M- pett A AC
I=Ng+1

Kk etk
&y

Es = [ E Uay - plefrePi s ACH

(23)

Np+INg
k.
_ Y
> (%

I=Nu+1

5 Results and Discussion

The formulation presented in the previous sections
has been implemented in a computer program. We
have validated the code against previously published
results: radiation from slot antennas [2, 3] and ra-
diation from dipole antennas [4]. The code has also
been validated against series sclutions for homoge-
neous dielectric cylinders. In the following subsec-
tions we present validation cases involving composite
dielectric/PEC structures: we compare our moment
method results against a series solution for the scat-
tered field from a dielectric cylinder under oblique
plane wave illumination, measured radiation pattern
from a siotted waveguide array of tilted slots in a
trough partially filled with dielectric material, and
calculated patierns for a four-element dipole antenna
on a TV-mast covered by a thin radome.

"0+ 0% ) efk»ﬁ:-mo:]
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5.1 Verification of Scattering Prob-
Iems (plane wave excitation)

In order to verify the code, an exact series solution
for a dielectric coated dreular metal cylinder under
oblique plane wave incidence with arbitrary polar-
ization was derived in a similar way as the solution
for the dielectric cylinder in [10, Ch.17,pp.144-148],
and as extended in [11]. The exact and numerical so-
lutions for the scattering widths are compared with
each other in Fig. 3 for a plane wave incident from
8; = 45°, ¢; = 180° and a; = 45°, a; is the angle
between the incident electric field aud the plane of
incidence (the z — & plane). The angles are defined
such that the Poynting vector 8 of the incident wave
makes an angle ¢; with the z-axis of the scatterer’s
coordinate system and an angle 8; with the scatterer’s
zy-plane, where positive # angles make the Poynting
vector point below the zy-plane. The electric field
makes an angle a with the plane spanned by the scat-
terer’s z-axis and the Poynting vector, such that the
projection of the electric field on # x 8 is positive.
The radius of the PEC cylinder is ke = 1.885 and
the outer is ka = 3.0. We use twenty segments per
wavelength on all material interfaces, where the wave-
length is the wavelength in the material. The largest
difference between the two caleulations is seen to be
about 0.5dB for ¢4 around 120°, Fig. 3.

magnitude (dB)

Figure 2: Radiation patterns of an edge slot on a trian-
gular conducting post. b = 0.4\. The horizontal pattern
(9 = 90°) is indistinguishable from the result in [3]. The
dashed curves are predicted farfield components on the
cone f = 60°.

5.2 Slot Excitation (equivalent mag-
netic current source)

Here we are going to present two different examples.
The first example is the radiation from an edge slot
on 2 triangular waveguide for base station antenna



22

o

Scatiering widih/ [¢B)]
&

-20

0 3c 80 80
s

120

Figure 3: Scattering width from an infinitely long circu-
lar cylinder under oblique planewave incidence, o = /4,
8; = n/4, and ¢; = . The cylinder radii are ka = 1.885
and kb = 3, The relative dielectric constant is ¢, = 4.
Exact series solution (solid) and MM solution (dashed)
using 20 basis functions per wavelength. The wavelength
is taken as the wavelength in the dielectric.

application. The side of the triangle is 0.4\ long.
Three siots, one on each edge of the triangle will sat-
isfy the 360° required coverage for this base station.
The geometry and the radiation patterns are shown
in Fig. 2. Our computed results agrees well with the
computed pattern presented in [3] for the horizontal
pattern (8 = 90°, i.e. k, = 0). Here, we also present
the radiation patterns for the cone cut 8 = 60°.

Slot antennas have been extensively used in arrays
for radar applications. Normally the slot arrays are
exited by a rectangular or parallel plate waveguide.
Circular polarization fields of the slot antenna are
normally obtained by slot pairs properly oriented to
each other with a 90° phase difference between the
slot aperture fields. Narrow slot apertures are also
used to excite microstrip antennas. For circular po-
larization two perpendicular slots coupled to two mi-
crostrip lines with 90° phase shift are used to produce
circular polarization. In Fig. 4 we present a single slot
antenna element which radiate circular polarization.
The slot is located in the broad wall of a rectangular
waveguide and it is loaded by a dielectric slab and sur-
rounded by baffles within a corrugated ground plane.
The slot is rotated 18.5° with respect to the center-
line of the waveguide to give the proper axial ratio
for circular polarization. The thickness of the dielec-
tric loading and the height and width of the trough
are designed to provide the required quadratic phase
difference between the two field components. The nu-
merical and measured results showed a good promis-
ing performance of this element.
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Figure 4: Cross-section of waveguide array designed for
circular polarization. !} = 131mm, I; = 58, I3 = 5mm,
li = 1bmm, I; = 10mm, ! = 10mm, Iy = 15mm,
er = 2.62. Waveguide WRI187, f = 4.9GHz. The slots
are rotated 18.5° with respect to the waveguide axis and
radiate into a trough partially filled with dielectric ma-
terial to achieve circular polarization. The antenna is
corrugated outside the trough to control the pattern in
azimuth. Measured (solid) and calculated (dashed) show
reasonable agreement.

5.3 Dipole Excitation (equivalent
electric current source)

In this section we verify the dipole part of the com-
puter program to previously published results and an
in-house code for concentric multilayer circular cylin-
ders. In Fig. 5 we see a circular PEC rod coated with
two concentric layers of dielectric. A Hertz dipole is
embedded inside the outer dielectric and tilted 45° to
the z-axis. The elevation and azimuth patterns are
calculated by both the present MM code and an in-
house code for concentric multilayer circular cylinders
where the fields are expanded in cylindrical modes
[12]. In the MM solution we use 20 basis functions per
wavelength and current component on all material in-
terfaces. The wave length is taken as the shortest in
the two contiguous media sharing the same bound-
ary, i.e. the three cylindrical interfaces are divided in
64, 76, and 79 segments respectively starting with the
PEC cylinder. This gives a total of 876 unknowns.



The difference in azimuth pattern for both polariza-
tions when using only ten segments per wave length
was less than 0.19dB.
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Figure 5: A circular PEC rod coated with two concentric
dielectric layers with a 45° tilted electric Hertz dipole in
the outer layer. The elevation and azimuth patterns are
calculated by the present moment method and compared
to a code for coaxial multilayer circular cylinders [12].
a = 0.257, b= 0.3A, ¢ = 0.375), d = 0.45)

The other verification case consists of four hori-
zontal half wavelength dipoles as shown in the in-
sertion of Fig. refTVmast, one dipole on each side
of the square metallic post {13]. We have calculated
the horizontal radiation patterns {(k, = 0, # = 90°)
with and without a circular cylindrical thin radome
enclosing the post and the dipoles, Fig. 6. The hori-
zontal patterns agrees to within the resolutions of the
graphs presented in {13]. We have also included our
predicted results for an elevation angle of 30° from
the horizontal plane (k, = 0.5k, § = 60°).
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6 Conclusion

A computer code for analysis of radiation and scatter-
ing from 2D structures with 3D sources (and oblique
plane wave incidence) has been developed. The 2D
structures consists of any number of infinitely long
composite cylinders, where each cylinder can have
any number of dielectric and PEC regions. The
sources we consider here are dipoles and slots that
are arbitrarily oriented with respect to the composite
cylinder and can be either inside a dielectric region
or in the surrounding free space or on the interface
between two regions.

The code has been verified in several different ways:
analytic series solutions, other numerical results and
measured data. In all cases the code performed as
expected.

Acknowledgment

We would like to thank Dr. Zvonimir Sipus for gener-
ating the validation curves for the double-layer coax-
ial cylinder excited by a Hertz dipole.

This work was partially supported by the National
Science Foundation under Grant no. ECS-9809862,
and by the Swedish National Board for Industrial and
Technical Development, NUTEK.

References

(1] P-8. Kildal, S. Rengarajan, and A. Moldsvor,
“Analysis of nearly cylindrical antennas and
scattering problems using a spectrum of two-
dimensional solutions,” IEEE Trans. Antennas
and Propagat., vol. 44, pp. 1183-1192, Aug.
1996.

(2] K. Forooraghi and P.-S. Kildal, “Transverse ra-
diation pattern of a slotted waveguide array ra-
diating between finite height baffies in terms of
a spectrum of two-dimensional solutions,” IEE
Proceedings-H, vol. 140, pp. 52-58, 1993.

(3! J. Hirokawa, J. Wettergren, P-S. Kildal,
M. Ando, and N. Goto, “Calculation of external
aperture admittance and radiation pattern of a
narrow slot cut across an edge of a sectoral cylin-
der in terms of a spectrum of two-dimensional so-
lutions,” IEEE Trans. Antennas and Propagat.,
vol. 42, pp. 1243-1249, 1994.

(4] P. Slattman, J. Wettergren, and P.-S. Kildal,
“Three-dimensional radiation from dipoles in the



24

130

ACES JOURNAL, VOL. 14, NO. 1, MARCH 1999

1270

180

Figure 6: Radiation pattern of four dipoles around a square conducting post with ¢ = 35cm, b = 47.5cm and
f = 600MHz (left). The same antenna surrounded by a thin dielectric radome with r = 70cm and ¢ = 1.5cm (right).

(5]

[6]

(8]

[10]

[11]

presence of a conducting strip,” in IEEE AP-S [12] Z. Sipus, P.-S. Kildal, R. Leijon, and M. Johans-

Symp., pp. 2266-2269, June 1994.

J. Wettergren and P. Sldttman, “An electric field
integral equation for cylindrical structures,” IEF
Proceedings-H, vol. 143, pp. 147-151, April 1996.

A. A Kishk and P. M. Goggans, “Eleciromag-
netic scattering from two-dimensional compos-
ite objects,” Applied Computational Electromag-
netic Society Journal vol. 9, pp. 32-39, 1994.

A. A. Kishk and P.-S. Kildal, “Electromagnetic
scattering from two dimensional anisotropic
impedance objects under oblique plane wave in-
cidence,” ACES Journal, vol. 10, no. 3, pp. 81—
92, 1995,

R. F. Harrington, Time Harmonic Electromag-
netic Fields. McGraw-Hill, 1961.

A. A, Kishk and L. Shafai, “Different formula-
tions for numerical solutions of single or multi-
bodies of revolution,” IEEE Trans. Antennas
and Propagat., vol. AP-34, pp. 666673, 1986.

J. R. Wait, FElectromagnetic Radiation from
Cylindrical Structures. Peter Peregrinus Litd.,
reprint ed., 1988.

A. A. Kishk and P.-S. Kildal, “Asymptotic

boundary conditions for strip loaded scatter-
ers applied to circular dielectric cylinders under
oblique incidence,” IEEE Trans. Antennas and
Propagat., vol. 45, pp. 51-56, Jan. 1997.

[13]

son, “An algorithm for calculating Green’s func-
tions for planar, circular cylindrical and spheri-
cal multilayer substrates.” Accepted for publica-
tion in ACES Journal

A. Sadigh and E. Arvas, “Deformation of the
horizontal radiation pattern of TV transmitting
antennas due to a thin dielectric radome,” IEEE
Trans. Antennas and Propagat., vol. 40, pp. 942-
049, 1992.



