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Abstract — A three-dimensional scattering field
Transmission Line Modeling (TLM) algorithm is
established to obtain bistatic radar cross sections of
gyroelectric and gyromagnetic objects at a single
frequency. Although gyrotropic material properties
are highly frequency dependent, their permittivity and
permeability tensors are made of complex constants
at a given frequency. For verification, the results for
gyrotropic spheres are compared with those from
previous studies, in which an analytical approach and
the Method of Moments along with Conjugant Gradient
Fast Fourier Transform method were used.
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I. INTRODUCTION

Obtaining the electromagnetic scattering of three
dimensional homogeneous gyrotropic objects is the main
goal of this paper. Previously, there have been some
studies regarding the radar cross sections of two di-
mensional or three dimensional anisotropic materials.
An analytical solution of electromagnetic fields in ho-
mogeneous plasma anisotropic media is given by Geng
et al. [1]. They displayed some numerical results of
scattering from gyroelectric spheres. Geng and Wu [2]
showed an analytical solution of the scattering fields of
a ferrite sphere by a plane wave using spherical vector-
wave function. They compare some of their numerical
results for radar cross sections of gyromagnetic spheres
with MoM CG-FFT simulation results of Zhu et al. [3].

Differential time domain methods such as the fi-
nite difference time domain (FDTD) method [4] or the
transmission line modeling (TLM) method [5] are widely
used for modeling electromagnetic problems consisting

of complex materials with arbitrarily shaped structures.
The main difference between the two techniques is the
layout of the unit cell and the time-stepping process
[6,7]. In this paper, we derive a scattering field 3D
TLM formulation from Paul’s algorithm discussed in
Reference [6]. Paul’s TLM algorithm is a total field
formulation, in which it was difficult to generate a
perfect plane wave as our incident wave. We needed to
obtain the scattering field formulation, where the incident
wave is analytically injected to the computation space.
Since our TLM computation space is truncated, a near
field to far field transformation method is also used to
obtain the far field scattering [8,9].

We describe the TLM algorithm used for modeling
3D gyrotropic objects in this study. Then the simulation
results of gyrotropic spheres, cubes, and finite cylinders
are demonstrated. Our TLM simulation results for gy-
rotropic spheres are validated by the currently available
alternative methods.

II. GYROTROPIC MEDIA

Gyrotropic media have been an important research
topic because of their anisotropic and nonreciprocal
behavior. When subjected to a constant magnetic field,
both plasmas and ferrites, which exist in nature, exhibit
anisotropic constitutive parameters. Plasmas and ferrites
under the influence of the applied magnetic field, are
generally called magnetized plasmas (or magnetoplas-
mas) and magnetized ferrites respectively. For magne-
tized plasmas the anisotropy is described by using a per-
mittivity tensor instead of a scalar permittivity, because
of their rich free electron content. On the other hand,
magnetized ferrites are characterized by a permeability
tensor in place of a scalar permeability value. In ferrites,
the anisotropic behavior is due to the magnetic dipole
moments, which form the structure of the material.
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A good example for magnetized plasmas is the
earth’s ionosphere layer, where the free electrons and
charged ions are greatly affected by the earth’s magnetic
field between the two poles. We can see the ionosphere
as a free electron gas around a huge magnet. There
is a wide variety of usage for ferrite devices, from
telecommunication to military applications.

A gyrotropic medium is called electrically gy-
rotropic or gyroelectric if the medium is characterized by
a relative permittivity tensor and a constant permeability
value. If we write the constant magnetic field as By =
bo By, where the unit vector by shows the direction of
the field vector, the relative permittivity and permeability
tensors of a gyroelectric medium can be expressed in the
following dyadic form

= £1 (T— i)oi)o) — je2 (i)o X 7) + 838080 R ﬁ = ,U,T.

N ()
In this equation [ is the unit matrix, which has value of
1 at diagonal elements and O at off-diagonal elements,
and j is v/—1. In this study the time variation of field
components is taken as e/“?,

When a medium is characterized by a relative
permeability tensor and a constant permittivity value,
the medium is called magnetically gyrotropic or gy-
romagnetic. The relative permittivity and permeability
tensors of a gyromagnetic medium can be expressed in
the following dyadic form

77 80[)0) 7]'[12 (i)o X 7) + ,ll,gi)oi)o y ? = 67.
2
Reference [10] discusses dyadic tensor and vector oper-
ations in detail.
In the Cartesian coordinate system, if By = 2By,
the relative permittivity and permeability tensors can be
obtained as
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For example, if the medium is a magnetoplasma, which
is a gyroelectric medium, then the permittivity tensor
parameters are given by [11]
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where wy, is the gyrofrequency or cyclotron frequency, w),
is the plasma frequency, and v, is the electron collision
frequency representing the loss mechanism. (w is the
angular frequency and equal to 27f.) The cyclotron
frequency represents the effect of the applied magnetic
field, and is proportional to this static magnetic field

_Bo

m

wp = (6)
Here m denotes the mass of each electron with charge e,
which is a negative number. The positive number —e/m
is called the gyromagnetic ratio.

The plasma frequency can be formulated as

Nye?
wp = =2 7
meo

where Ny is the number of free electrons per unit
volume.

The effect of collisions, which leads to the ab-
sorption of energy, is taken into account by adding the
collision frequency into the formulation. These collisions
are mainly due to thermal motions. For cold plasma,
thermal motions are generally neglected, since the dis-
tance traversed by an electron is shorter. With v, = 0, the
parameters of the permittivity tensor of the cold plasma
can be written as follows

wp
El_l_iaﬂfwf’ (8a)
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The derivations of these parameters are given in [12].

On the other hand if the medium is a magnetized
ferrite which is a gyromagnetic medium, then the per-
meability parameters are defined as [10]

wWowWm
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where wy, is the saturation magnetization frequency, and
wp is the Larmor precessional frequency.



III. SCATTERING FIELD 3D TLM MODELING OF
GYROTROPIC MEDIA

In his Ph.D dissertation [6] and his paper [7],
Paul established a new TLM formulation starting from
Maxwell’s equations. In his method, the governing field
update equation in Laplace domain is

OF° =AF +5F +sAt2M F (10)

where & and M are the conductivity and the suscepti-
bility matrices, respectively (s = j27 f). I (in Paul’s
dissertation it is represented as F" and called the vector
of reflected fields) is the node excitation vector and F'
is the vector of total normalized fields. s is the Laplace
variable and At stands for the time step duration. Start-
ing from the total field TLM formulation’s governing
field update equation (10), we can derive the scattering
field TLM formulation, which has a field update equation
in the form of

2F s = AFscat + 7 Focat + 5At 2M Foegy
+o F’inc + sAt2M Finc

(1D
where Fyoq; and F,. are the normalized scattered and
incident field vectors [13,14].

In our computations, the conductivity matrix o will
be taken as zero. The susceptibility matrix M has both
real and imaginary elements.

Since we assume an applied static magnetic field
in z direction, the relative permittivity tensor of the

gyroelectric materials has the following form

&1 jEQ 0
E=| —jea & O (12)
0 0 €3

which means an electric susceptibility matrix of

Xel Xe2 0
Ye = —Xe2 Xel 0
0 0 Xe3
g1 — 1 jEQ 0
= —ng &1 — 1 0
0 0 €3 — 1

Similarly, for gyromagnetic materials, the relative per-
meability tensor will be given by

(13)

_ pr Jgp2 0
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0 0w

which implies a magnetic susceptibility matrix of

Xm1 Xm2 0

Ym = —Xm2 Xmil 0
0 0 Xm3
. 15
pr—1  jpe 0 (15
= —jp2 =10
0 0 M3 — 1
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For single frequency formulation, the tensor ele-
ments will be constant values. Thus, M matrix consists
of constant elements which have real and imaginary
parts. For gyroelectric medium we have

Xel Xe2
—Xe2 Xel
37 Xe3
M = 16
Xm (16)
Xm
Xm

where x,, is the magnetic susceptibility value. The
matrix elements, which are not shown, have a value of
zero. For gyromagnetic case the matrix M has the form

Xe
Xe
M= Xe (17)
Xm1 Xm?2
—Xm2 Xmil
Xm3

where x. is the electric susceptibility value. x,, and x.
are assumed to be real quantities.
In the field update equation

OF. ., = AF sear + SAL2M Fopay + sAt2M Fipe (18)

when we multiply the matrix elements with sAt term,
we will have

sAtxe1 = SAtR[e1] + jsALS[eq] (19)
= sAtR[e1] — wALS[eq],

sAtYm1 = sAR[u1] + jsAtS ] 0)
= sARfu] - wAtSu],

SAlXes = —sAtS[ea] 4+ jsAtR[es] o1
= —sAtS[es] — wAR[es],

SAtXmZ - —SAtC\}[/LQ] + jSAﬁR[Mg] (22)
N N

sAtxes = SAtR[e3] + jsAtSes] 23)

= sAtR[es] — wAtS[es], :
SAtXms = SAR[us] + jsALS[us] 24)

= SAtR[u3] — wALS[ps)

where R[.] and 3[.] denote the real and imaginary parts
of [.], respectively. According to the derivations shown
above, the term sAt2M can be decomposed into two
parts as

SAL2M = sAI2X, + 2X o (25)

where both ?1 and ?2 matrices have real valued ele-
ments and can be shown in explicit form for gyroelectric
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medium as
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0
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(26)
and for gyromagnetic medium as
Xe
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0
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(27

Then (18) will become

QFant = 4Fscat + SAtQXl " scat + 2Y2Fscat
+SAt2X1 anc + QXQFWW
(28)
Then we apply the bilinear Z transform to (28) by
changing
At 2l 29)
14271

which yields to

2cmu,t = 4Fscat + 4 1tz —1 Xl Fscat + 2§2Fscat
+41 —1X1 F7W(+2X2F7'IL('
30
After doing some algebra, (30) can be put in the follow-
ing form.

(4? + 4?1 + 2?2)Fscat = 2Fscat + 2_15
( 4X1 - 2X2)anc
(€2

where

§ = QF;(M + (4§1 - 2§2) Finc

+ (—4? 44X, — 2?2) Fo., P
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27 1Sin Z domain corresponds to the previous time step
information of S in time domain

S(z) — Sn], 2~ *S(z) — S[n —1]. (33)

Here n is the time index. Hence we can write 2715 as
Sin—1 = 2F,un—1]
+ (4%, - 2X2) Fineln — 1]
4 (—4T + 4%, — 2?2) Fyeatln — 1].

(34)
The scattered field update will be computed using

Focar =T (2F e + (=4X1 = 2X3)Fine + 2152
5)

(

where

- (4? 4%, + 2?2) - (36)

In time domain

Fuwlt] = T (25l ])

g

In our computations, the regi@ outside the scatterer

X2)Ficln]) BT

’ﬂH HH/-\

_is chosen to be free space, with X1 = 0 and X, = 0.

In the free space region, the incident field terms of (34)
and (37) will drop (since X; = 0 and X, = 0) and
only the scattered field terms will remain. This does not
mean that the incident field is absent in the region. In
our algorithm we only update the scattering fields in the
free space region.

IV. RADAR CROSS SECTIONS OF GYROTROPIC
SPHERES, CUBES AND CYLINDERS

In this section, we will exhibit some of our TLM
simulation results, where we modeled three dimensional
homogeneous gyrotropic objects as our scatterers. For all
our simulations, we imposed a TEM plane wave, whose
electric field is polarized in x direction, as our incident
field as shown in Fig. 1 for sphere. The scatterers
are placed at the center of the computational space
coinciding with the origin of the coordinate system. The
radii of the spheres are denoted by a.

In our simulations we used a sinusoidal wave as
the incident wave propagating in z direction, which has
electric field component in x direction. The Fine vector
has the form of

‘/Z.TLC

(38)
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‘[ Gyrotropic Sphere

Fig. 1. Incidence of a plane wave to a gyrotropic sphere
in free space.

where
1
Vine = tine = —Alsin(2m f (nAt — EZAZ)) (39)

n is the time step index and z is the z coordinate index of
the cell. We have —Al in the front, since these quantities
are normalized fields. Vj,. in (38) denotes the E field
in x direction, while i;,. represents the H field in y
direction.

The results of bistatic RCS (radar cross section) cal-
culations of gyrotropic spheres obtained by Geng et al.
[1,2] and Zhu et al. [3], were reproduced using the TLM
algorithm discussed before. Zhu et al. used the Method
of Moments (MoM) speeded up with the Conjugate-
Gradient Fast Fourier Transform (CG-FFT) approach. In
[1] and [2], Geng et al. derived the scattering fields of
eigenfunction representation in spectral domain, using
the expansion of plane wave factors with the spherical
vector wave function in isotropic media, and the Fourier
Transformation. Since the results of the previous studies
are for the total RCS (summation of co-polarization
scattering and cross-polarization scattering) on E plane
(the plane which is parallel to E**¢) and on H plane,
which is perpendicular to the E plane, here we calculate
the RCS of the same type in order to compare with the
previous results.

First, we will examine a gyroelectric sphere, where
the electrical dimension is chosen as kqa = 0.5 (kg is
the free space wavenumber). Discretized space step Al
is set to be a/20 in our simulation. The time step At
is equal to Al/2c¢ for 3D TLM simulations, where c is
the speed of light in free space, because the transmission
lines connecting the nodes have an inductance per unit
length of 119/2 and a capacitance per unit length of £/2.
Thus, the velocity of propagation inside the transmission
lines is 2c. The relative permittivity tensor elements are
assumed to be €1 = 5, €5 = 1, €3 = 7. On the other
hand, the relative permeability of the sphere is assumed
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to be 1. Our simulation results are compared with those
of Geng et al. in Fig. 2. The E plane is the xz plane,
while the H plane is the yz plane. The results agree well
with each other.

Gyroelectric sphere
-20 T T

H plane
a5t 4

B)

ol (d

mﬁl
E plane Yy ;(E

k
§ [ — Geng et.al. E plane

Lt

Geng et.al. H plane
O TLME plane

a5t )
ui} & TLMH plane

=) L L L L L I I I
a 0 40 B0 60 100 120 140 160 180

Fig. 2. Radar cross sections versus scattering angle 6.
The results of TLM algorithm are shown along with the
results of Geng et al. [1]. kpa = 0.5, €1 = 5, g9 = 1,
ez =7 (Al = a/20)

Another gyroelectric sphere with kpa = 7 is
considered. The relative permeability value is chosen
to be 1, while the relative permittivity tensor elements
are €1 = 5.3495, e9 = —2, ¢3 = 7. This example
is also taken from the paper of Geng et al. [1]. The
simulation was run with Al = A/50 () is free space
wavelength). The agreement between the RCS results,
which are plotted in Fig. 3, is reasonably good.

Gyroelectric sphere
20

: T
Geng st al H plane
----- Geng et.al. E plane

T TLM H plane Al = A/50
E plane O TLM E plane Al = /50

150

e

/12 (4B)
o

H plane .
i ]

L L L L
20 40 &0 a0 100 120 140 180 180

Fig. 3. Radar cross sections versus scattering angle
0. The results of TLM algorithm are shown along with
the results of Geng et al. [1]. kpa = 7, €1 = 5.3495,
gg=—2,e3 =7 (Al = \/50)

Our next simulation case is a gyromagnetic sphere,
where kga = 0.27. The discretized space step Al is
chosen to be a/20, and At = Al/2c. The relative
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permeability tensor elements are py = 5, po = —1,
and ps3 = 7. Although, us = 7 does not represent the
ferrite material, we chose it to compare with the results
of Geng et al.[2]. We assumed the relative permittivity
of the sphere as 1. Fig. 4 shows the comparison of our
simulation results with those of Geng et al.[2].

Gyramagnetic sphera
| j

E plane

ofa? (dB)

Q@ TLM E plane
5k O TLM H plane

Geng et al. E plane

----- Geng et.al. H plane
T T

L
a 20 40 B0 80 100 120 140 160 180

Fig. 4. Radar cross sections versus scattering angle 6.
The results of TLM algorithm are shown along with the
results of Geng et al. [2]. kga = 0.27, 3 = 5, po = —1,
3 =17

As another simulation example, we modeled a
gyromagnetic sphere with kga = 2, whose RCS was
computed by Zhu et al. previously [3]. Similar to our
previous sphere examples, we assumed a relative per-
mittivity of 1. The relative permeability tensor elements
are ug = 1, po = —1 and p3 = 1. Al = a/20 and
At = Al/2c. Our RCS results agree well with the results
obtained by Zhu et al. as shown in Fig. 5.

Gytamagnetic sphere
T T

T T
o TLM E plane
o TLMW H plane

sl Zhu et.al. E plane | |
————— Zhu et al. H plane

E plane

L I I I
a 20 40 B0 80 1oa 120 140 160 180

Fig. 5. Radar cross sections versus scattering angle 6.
The results of TLM algorithm are shown along with the
results of Zhu et al. [3]. kpa = 2, p1 =1, po = —1,
w3 =1

It has been shown that our bistatic RCS results for
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gyrotropic spheres modeled using TLM algorithm agree
well with the analytic bistatic RCS results of Geng et al.
and MoM CG-FFT results of Zhu et al. As an advantage,
our method is capable of simulating arbitrarily shaped,
inhomogeneous objects. The radiation problems are also
easy to implement with our technique.

Next, we will demonstrate the simulation of a
gyroelectric cube. The incident field is x polarized plane
wave traveling in z direction as shown in Fig. 6. In our
computations the center of the cube coincides with the
origin of the coordinate system. The length d of one side
of the cube, is set to be 1.2, where A is the wave length
of the incident field.

Gyrotropic Cube

d

Ege My

Y K"' !zf‘mr'

Fig. 6. Incidence of a plane wave on a gyrotropic cube
in free space.

In our simulation Al = A/30 and At = Al/2c.
The permeability of the gyroelectric material is 1, while
the permittivity tensor values are €; = 1, e5 = 1 and
€3 = 1. The bistatic RCS of the cube is given in Fig. 7.

Gyroelectric cube 5,=1 ;=1 e=1

/2 (48

I ! I L
20 40 B0 60 100 120 140 160 180

Fig. 7. Bistatic radar cross sections of the gyroelectric
cube versus scattering angle 6. d = 1.2\, e; = 1,69 = 1,
and 3 = 1.

Keeping the dimensions of the cube as same as



gyroelectric case, we modeled a gyromagnetic cube, with
a relative permittivity of 1. The relative permeability
tensor elements are assumed as u; = 1, po = 1 and
s = 1. The discrete time-step and space-step values are
kept the same as gyroelectric cube case. Fig. 8 exhibits
the bistatic RCS results of out TLM simulation for this
gyromagnetic cube.

Gyromagnetic Cube |, =1 k=1 p=1

===-= E plane
= H plane | ]

/32 (dB)
o

! ! L L
20 40 60 80 100 120 140 160 180

Fig. 8. Bistatic radar cross sections of the gyromagnetic
cube versus scattering angle 0. d = 1.2\, 1 =1, pe =
1, and p3 = 1.

Gyrotropic Cylinder

e =

) Ep-lly _:u‘
I_'_, [ ] d
X -

Fig. 9. Incidence of a plane wave on a gyrotropic finite
cylinder in free space.

The finite circular cylinder is another special case
in investigating the electromagnetic scattering of three
dimensional gyrotropic objects. In our TLM simulations,
we placed the gyrotropic cylinder as in Fig. 9, where
the circular cross section is in y-z plane. An z polarized
incident plane wave is traveling in z direction. The radius
of the cylinder is denoted as a, while the height is
represented by d.

We first modeled a gyroelectric cylinder, which has
a height of d = 1.2\ and a radius of a = d/2. We
set Al = A/30 and At = Al/2c. Our gyroelectric
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cylinder has a relative permeability of 1, while the
relative permittivity tensor elements are €1 = 1, €2 = 1
and €3 = 1. The bistatic RCS of the cylinder is given in
Fig. 10.

Gyroelectric Cylinder =1 &,=1 5;=1

20

a2 (dB)

L L L
el 40 &0 &0 100 120 140 160 180
&

Fig. 10. Bistatic radar cross sections of the gyroelectric
finite cylinder versus scattering angle 0. d = 1.2\, a =
d/2,e1=1,e3=1, and g3 = 1.

A gyromagnetic cylinder was simulated next, with
the same discrete space-step and time-step as in gy-
roelectric cylinder case. The material has a relative
permittivity value of 1. The relative permeability tensor
elements are set as p; = 1, go = 1 and pug = 1. The
bistatic RCS of this cylinder is given in Fig. 11.

Gyramagnetic Cylinder =1 p=1 p=1

g
‘=
[l S

s

101

a5 R

20 40 60 60 100 120 140 160 180
&
Fig. 11. Bistatic radar cross sections of the gyromag-

netic finite cylinder versus scattering angle 6. d = 1.2,
a=d/2, p1 =1, pa =1, and pz = 1.

V. CONCLUSIONS

In this paper, the scattering field formulation of 3D
TLM algorithm is derived starting from Paul’s total field
formulation TLM algorithm discussed in the [6]. Then
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the gyrotropic material modeling for single frequency is
explained. Moreover the near field to far field transfor-
mation with the notion of radar cross section is adapted
to our TLM algorithm. The usage of this method is
exhibited by modeling some gyrotropic spheres, cubes,
and finite cylinders and computing the bistatic radar
cross sections of these three dimensional scatterers. The
TLM simulation results are validated by the results of the
currently available methods used by Geng et al. [1,2] and
Zhu et al. [3]. Using our method, it is easier to simulate
arbitrarily shaped inhomogeneous gyrotropic objects.
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