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Abstract

Finite difference methods are developed to solve the
nonlinear partial differential equations approximating
solutions of the Helmholtz equation in high frequency
regime. Numerical methods are developed for solving the
geometrical optics approximation, the classical asymp-
totic expansion, and a new perturbed geometrical optics
system. We propose a perturbed geometrical optics sys-
tem to recover diffraction phenomena that are lost in ge-
ometrical optics approximations. We discuss techniques
we have developed for recovering multivalued solutions
and we present numerical examples computed with finite
difference approximations of the above systems.

1 Introduction

We have developed finite difference methods for solv-
ing the nonlinear partial differential equations that ap-
proximate high frequency solutions of the scalar wave
equation, starting from the geometrical optics approxi-
mation, continuing to the classical asymptotic expansion
and then to a new perturbed geometrical optics system.
The motivation is to solve, numerically, very high fre-
quency solutions of the Maxwell’s equations on a coarse
grid, coarse compared to the wavelength of the solution.
Qur methods could be interpreted as ray tracing on a
fixed grid and potentially will replace ray tracing meth-
ods for high frequency calculations in many cases. Our
methods also could be used as a computational com-
plement to the GO and GTD methods. Qur numerical
methods could be used to compute GO and GTD solu-
tions that are not analytically solvable.

We concentrate on the scalar linear wave equation in
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two spatial variables,
v = ¢ Av = (2, 4)(vez + vyy ), (1)

to develop the methods. Here, x and y are the spatial
variables, t is the time, v is the amplitude of the wave and
e(z,y) is the speed of the wave in the medium. Time-
harmonic solutions of the wave equation of the form

u(z, ), (2)

are of special interest. Here, w is the time frequency of
the wave as imposed by the boundary conditions. For
time-harmonic solutions the wave equation is reduced to
the Helmholtz equation

2
Au+ ‘-'—::—2-11 = Au+k*n?u=0, (3)

iwl

v(z,y,t)=e

where n(r,y) is the index of refraction. and the non-
dimensional quantity, &, represents the relative size of
the wavelength of the wave with respect to the phys-
ical size of the problem. Direct numerical solution of
the Helmholtz equation for large values of parameter &
is difficult. The fundamental difficulty is the fact that
the necessary mesh size in each coordinate direction is
proportional to k~!. To resolve each wavelength one ap-
proximately needs ten points. For a three dimensional
calculation one needs approximately O({10%)?) number
of points to resolve the solution. Values of k = 1000 are
common for many applications.

Since direct solutions are not practical, approximate
methods are of special interest. The geometrical optics
approximation is a qualitatively correct approximation
in the Iimit of infinite frequency [3]. The geometrical
optics could be derived formally by considering a solution
of the form

u(z,y) = Az, y)eik¢(z’y), (4)

for the Helmholtz equation. The amplitude, A, and the
phase, ¢, satisfy the geometrical optics system:

0= |V[ — n? 5
0=2VA-Y¢+ AAG. (5)
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This approximation is valid for infinite frequency and it
does not include solutions that manifest the wave nature
of the solutions of the Helmholtz equation.

A substantial correction to the above approxima-
tion could be achieved by expanding solutions of the
Helmholtz equation around zero wavelength, In inverse
powers of &£ in the following form

u(z,y) = eFEN D" A, (2, y)(ik) .

n=0

(6)

+ By substituting the above expansion in the Helmholtz
equation and equating the coefficients of different pow-
ers of k, partial differential equations for the coefficients
¢, Ap, A;, etc., are derived,

0 = |V¢|? — n?
0=2Ve-VAy + AsAd
0=2V¢VAny1 + An18¢ + AA,.

The asymptotic expansion is based on the phase defined
for the geometrical optics limit and it fails where geo-
metrical optics fails, notably on shadow lines. We have
developed methods for the above classical asymptotic ex-
pansion previously in Fatemi, Engquist, and Osher {2],
and this paper is a continuation of the previous work.

We have investigated a new approximation which we
shall name the perturbed geometrical optics system.
This system amounts to the geometrical optics equations
including the usually omitted terms of order k=2,

{ 0=|V¢|? —n?+k 2(AA/A)

0=2VAVd+ AA¢.
We can easily show that these equations are equivalent to
the Helmholtz equation in a compact simply connected
domain as long as the amplitude is bounded away from
zero everywhere. Numerical results show us that this
system has qualitatively correct solutions near shadow
lines.

(8)

2 Perturbed Geometrical Optics

We propose a new approach for including the effects of
finiteness of frequency. In this approach we augment the
geometrical optics equations by including terms of or-
der k~? in the equations. A nonlinear elliptic sysiem for
phase and amplitude is obtained. This system is a sin-
gular perturbation of the geometrical optics equations.
We claim that our system is equivalent to the Helmholtz
equation in a simply connected domain if the amplitude
of the solution to the Helmholtz equation 1s bounded
away from zero everywhere in the domain.

ON
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We assume that u(z) is a complex solution to the
Helmholtz equation in a compact simply connected do-
main £ contained in &3,

Au(z) + kn%(z)u(x) = 0. (9

On the boundary either we specify Dirichlet boundary
conditions or we specify a Sommerfeld radiation bound-
ary condition of the form

QE = tku,

on

where n is the unit vector normal to the boundary.

(10)

Since we are interested in calculating high frequency
solutions of the wave equation we use a transformation
of the form

u(m) — A(x)eikq&(z) - eu(z)+ik¢(a:), (11)
to derive a new set of equations for amplitude and phase,
(4,¢) or for (v,¢). This transformation is nothing
but the inverse of the Cole-Hopf transformation used to
transfer the Burgers’ equation into the linear heat equa-
tion.

The important guestion is whether this transformation
is always possible. We make the observation that given
any twice differentiable complex function defined on a
simply connected compact domain & C R3, we can write
it as

u(z) = A(z)e*4=) + ¢,
for A(z) > 0, ¢(z) a real function, and ¢ a complex
constant. Since |u(z) is a continuous function in a com-
pact domain it is bounded from above and there is a
constant ¢ such that |u — ¢| > ¢ > 0. Therefore we let
u(z) = u(z) — ¢+ ¢ = t(z) + ¢, where we have |i] > 0.
We define the amplitude function simply as

A(z) = la(e)|. (12)

Then we define a new function g(z) = 4(z)/A(z). Since

Vx(-iVg/g) =0, (13)
the phase is defined uniquely by the above equation, as
long as the domain £} is simply connected.

Now given a twice differentiable solution of the
Helmholtz equation we write it as u(z) = A(z)e'*¢+¢ =
e?tiké L o If we substitute the above ansatz in the
Helmholtz equation we obtain the following system for
the v and ¢ functions

|Ve|? — n? — k=%(Av + |[Vu[?) + Real(ce™?~##) = 0
2Vu Ve + A¢ — kImag(ce " ~#9) = 0.  (14)

If ¢ # 0 the equations are correct but have little use.
The new nonlinear system has terms that are highly os-
citlatory, and solving the resulting system requires a fine
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mesh equivalent to the mesh necessary for the original
Helmholtz equation. If we assume that ¢ = 0 and drop
terms of order £~2 we obtain the equations of geometri-

cal optics , \
Vo] —n?=10
{ V-V + Ad = 0. (15)
We consider the case where ¢ = 0 but we keep the terms
of order k=?. We hope that this new system has solu-
tions that are close to the geometrical optics limit, yet

it recovers some of the wave phenomena that are lost in

the geometrical optics equations.
The perturbed geometrical optics equations are of the
form

(16)

|[Vé|? - n? k" HAv+ |Vo|H) =0
2V Vo+ A= 0.

The above system is equivalent to the following system
for (A, ¢) variables

|Vl2 — n? — k~2(AA/A) =0 17)
IVAVé+ ALg = 0. (

We can choose either set of variables. We have performed
computations using both sets and the numerical results
are similar. The (v, ¢) variables seem a little more natu-
ral since the equations have constant coefficients for the
highest order derivatives.

The above systems are nonlinear elliptic systems and
either one could be solved for steady state solutions of
the Helmholtz equation by fixed point methods or by
Newton’s method. We use an artificial time-marching
method to obiain the steady state solution

ér = [Vé|2 — n2 — k=2(Av + |Vv[?) 8
vy = 2Vu-Vé + Ag. (18)

We have observed that this specific time-marching is
equivalent to solving the Helmholtz equation by writing
it as a time-dependent Schroedinger equation,

iku, = Au+ k2n?u. (19)

If we substitute u = e?1¥“% in the above equation and
separate teal and imaginary parts we obtain our time-
marching scheme.

2.1 Linear Analysis of the Perturbed
System

To determine the type of the system and design the nu-
merical methods, a linear analysis of the system is useful.
We linearize the following system

{ ¢ = [Vo[* = n® — k~3(Av + |Vo[))

vy = IVE-Vé + Ad, (20)
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around the solution (9, ). We let

b=6+¢ v=ov+7. (21)

We obtain the following equations for ¢ and &

{ by = 2V¢ Vo — 2k~ 2V VE — kA% (22)

By = V-V + 2V$- Vi + Ad.

We take the Fourier transform in spatial variables and

we obtain i
(¢) -
]
-

( 2V b-i( —2k=2ViriC ) ( é )+
2V 5-i( IV il ¥

( o ek ) ( s ) (23)

The eigenvalues of the matrix are calculated to be

M2 =2V b NP £2671V0¢. (24)

If k=1 is zero the linearized system has two hyperbolic
modes and the solution to the system is

(%)=

210"Vt ‘ 0 ( $(0) )
(2iC-Vi — [([2)te’t T g2¢°Vo [ 9(0) )
(25)

The above solution is only weakly stable although the
nonlinear system is stable.

For k~! non-zero we have a system with Schroedinger
modes and the eigenvalues become distinct. The system
has an exponentially growing mode that in our numer-
ical calculations was not observed. That is due to the
stability of the nonlinear problem and our upwind nu-
merical methods. This phenomena is similar to the fol-
lowing Schroedinger equation with a variable coefficient,

p(z) > po > 0,
ur = ip(z)uz)s = ip(z)usz + ipo(z)us,  (26)

which is well-posed, but the frozen coefficient problem
is ill-posed [4]. The system written for A and ¢ can be
analyzed in a similar fashion. From the system

Oy = quslz —n?— k_z(AA/A) (27)
A =2VA-Vo+ AAg,
we obtain the linearized system,
{ $; =2V4-Vé +k 2AAA/A? — k2AAJA (28)
A, =2VA-Vé +2Ve VA + AAG + AAS.
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The Fourier transform of the system is calculated to be
6\ _(2veic 0 ¢
A, T\ 2VAC 2Vei A

0 kTCP/A ) ( ¢ )
+( KP4 0 i)t

(& =720 (50)

The eigenvalues of the matrix are calculated to be

(29)

2i(- Vot
ik~ ([¢1 — 26[¢ PV A/ A - [(PAd/A - [(IPAA/A
+2VACAAJA® + AAAG AT (30)
For large ¢ we have
Mom 20V ik MNP £ kT VA/A (31)

Although the linear problems have growing modes, the
nonlinear problem is stable.

Our numerical method is stable due to a combination
of our upwind methods and the nonlinear stability of
the underlying problem. The time-marching scheme is

compactly written as
iku, = Au+ k*n’u. (32)

From the above equation one can easily see that our
marching scheme satisfies the following conservation law
for the amplitude of u in the finite domain

Brf tiu = (2k_1)f Imag(#Vum).  (33)
el a0
The index of refraction is a positive bounded function,

0 < n2 < C, and we can bound the gradient of the
solution using the following relation

e:S',[/n Vu-Vi + & L(C —nHau] =

2./30 Real(@,Vu-n) + (2Ck) ./an Imag(&Vu-n). (34)

The above identities could be translated in terms of the
variables A and ¢,

2 = Imna, 2 ‘n
a’an _2/m1 g(A2V ) (35)
2 2 2 — a4 =
&[/ﬂ([vm%ﬂ IVéi{®) + &k fn(c VAY

9 f A, VAN + k2470, Vo + (20K / (A*Vén).
oMt an (36)
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3 Numerical Methods

We have developed finite difference methods to solve the
nonlinear PDEs that we have discussed. The schemes for
the geometrical optics system and the asymptotic expan-
sion systern are explained in our previous paper and we
do not describe them here. The numerical method for
the perturbed geometrical system is an implicit scheme
that uses the previous schemes as building blocks. To
achieve high order accuracy we also use the ENO, the
essentially non-oscillatory, method. The ENQ method
is based on an adaptive stencil to calculate the deriva-
tive of a function defined on a grid. Use of this method
allows us to calculate solutions of the eikonal equation
with discontinuous first derivatives without smoothing
the solution.

We use the following notation to denote the discretiza-
tion. Here, Az, Ay, and At are the mesh sizes, and ¢?.J
is the numerical approximation to the solution of the
eikonal equation,

5 = olw, y;, ") = @(iAz, jAy, nAt), (37

and vf is the numerical approximation to v(z,y,%),

v & (@, 5, 10) = v(iAz, jAy, nAt). (38)
We use standard notation for forward, backward, and
centered differences,

DFéy; = ¢£+1Z; éi;

DI i = Pi.j —Aii—l,;‘

o Big1,j — Pi-1j
Dl¢y; = /L

2Azx (39)

A time-marching scheme is used to solve the perturbed
geometrical optics system. We consider the discretiza-
tion of the following system for the variables (v, ¢). The
discretization for variables (A, ¢) is similar.

v, = V0V + Ad (40)

{ ¢r = |Vo[* — n® — k7% (Av + |Vo]?)

Since we are interested only in the steady state case
we consider a simple time discretization. We discov-
ered through linearization of the system that it has two
complex eigenvalues, therefore a forward Euler time dis-
cretization of the system will be unstable. We do a
mixed discretization in time of the system. We treat
the linear part implicitly and the nonlinear part explic-
itly. This will enable us to have time steps which are
proportional to Az, since we are treating the nonlinear
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transport terms explicitly. To see this point we consider
the simple linear equation
(41)

Uy = Uy + BUg,

where { = +/—1 and a is a real positive number. Then a
forward Euler discretization of this equation is

uft = o + AtiD} Dy ul + AtaD}ul. (42)

j
We can do a linear stability analysis of the above scheme
using a solution of the form u} = x"e% Aze  We substi-
tute the above ansatz in the scheme and solve for &,

At
Az

tATw

k=14 z 2(2 cos(wAz)—2)+a ~1). (43)
If @ = 0 we can easily show that £ > 1 for all values
of At and Az. If ¢ # 0 then the upwind discretization
sometimes can stabilize the scheme for At o Az?, but

that is a very small and restrictive time step.

A mixed discretization of the following form, where
the first order derivative is discretized explicitly and the
second order terms implicitly, results in a time step of
order Az,

1,_‘Ln-l-l

T~ AtD} D7 u;"“ = ul + AtaDFu}. (44)

We calculate « for the above scheme and we obtain

14 eAt/Ae(eb7 — 1)
T 1+ 1At/ Az?(2 cos(wAz) —

. 4
We can easily show that [k| < 1 for all w if aAt/Az < 1,
since the absolute value of the numerator is less than
one and the absolute value of the denominator is greater
than cne.

The numerical scheme for the system is:

D-w n+l

ST + kT2 AYDF Do + DY Dy R =

¢JJ+AtG(D+ ’J:D ¢|JID+¢1JFD qu)

k2 At(Dol;)" + (Dyel;)?) (46)
Vit - AYDID; ¢} + DD ¢ =
zmp;*v;{j-Dg T+ 28tDGE - DYGT,.  (AT)

The numerical flux, denoted by G, is calculated based
o the exact or an approximate solution of a Riemann
problem for the eikonal equation. We use two different
numerical fluxes. One is the Godunov type flux and the
second is a Lax-Friedrichs type. In the first method the
Hux is defined through a third order ENO interpolation
and a Godunov type Riemann solver. The values of the
derivatives, Dt and D, are replaced by DEN? and are
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calculated based on third order interpolation with an

adaptive stencil [5]. The Godunov flux is defined by

Glut, u™, vt 07) = eXtyer(u- ut) eXbyer(v= vty H (1, v).
(48)

Here, H(u,v) = (u* + v?) — n? and

I{a,b)={ min(a,b), max(a,b)]. The function ext is defined

by

if a<i,

if b<a.

(49)
(50)

eXlyei(a,b) = MaAXye[(a,b)

exXtyel(a,b) = Milyg f(ab)

Note that in general the operations of taking max and
min do not commute and the Godunov flux in not al-
ways uniquely defined. But for many cases, including
our H{u,v}, the flux is uniquely defined. Use of a third
order ENO interpolation and the exact Riemann solver
results in the excellent resolution of the discontinuities
in the solution of the phase.

The Lax-Friedrich flux is simpler to describe and is
defined as

Gut,u, vt o) = H((ut + u”)/2, (v +v7)/2)

taz(ut —u7) +ay(vt +v7). (51)

The &, and @, are local upper bounds for absolute values
of the partial derivatives of the Hamiltonian H (u, v}

BH

<ap for ue{u,ut), (52)

’— <ay for ve(v™,vt). (53)

The terms D7 and D} refer to the upwind discretiza-
tion of the transport terms and for a first order dis-
cretization they are defined as the following

if DP¢:; >0
if Dgéi’j <0

ngi,j f .Dzi‘l}g,j (54)
Divij = Dy v

In our code we have used a second arder ENO method
to calculate D¥ to achieve higher order accuracy.

4 Numerical Results

In this section we present computed numerical results.
QOur methods are appropriate for very high frequency
regimes and direct comparison of our solutions with ex-
act solutions of the Helmholtz equation is not possible.
Nevertheless we compare our solutions with exact solu-
tions calculated at a lower frequency whenever possible.

Our first computed example corresponds to calcula-
tion of the phase and the amplitude around a shadow
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AMPLITUDE. K=100
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Figure 1: Amplitude of the solution of the perturbed
geometrical optics system around a shadow line, k=100,

A=c¢e"

line using the perturbed geometrical optics system. We
set up the problem in the domain [~1,1] x [-1,1]. We
specify Dirichlet boundary conditions on one side and
Neumann type boundary conditions on the rest of the
domain. Let us recall that the solution u is

u = e"Tike, (55)
For Dirichlet boundary conditions we specify
v(=Ly) =0 &=Ly =0 ify>0 (56)
v(-1,y) = -10 ify < 0.

For rest of the boundary we specify V¢-n. Since the
values of the V¢ n are not known a prior:, we extrap-
olate the values from neighboring points. The solution
of the system is graphed in Figures 1 and 2 with the
amplitude shown in Figure 1 and the phase contoured in
Figure 2. Note that we have used the value k = 100 in
this calculation and that the amplitude shows the typ-
ical oscillatory behavior around the shadow line ({1] p.
434 ). In Figure 3 we graph the intensity of a diffracted
plane wave from an edge using the Fresnel approxima-
tion ({1] p. 434 ). Our computed solution has the correct
qualitative behavior.

Next we consider reflection of an incident wave off a
cylinder. We consider a cylinder of radius one at the
origin. The source of the wave is at the point (0,7). We
use polar coordinates for calculations. We assume that
the solution is of the form
- Ageihpg.

u= A e*" (57)
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PHASE, K=100

T

Figure 2: Phase of the solution of the perturbed geomet-
rical optics system around a shadow line, k=100
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Figure 3: Fresnel diffraction pattern of a straight edge
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The physical problem is posed in all of £? but our com-
putational domain is {1, 8] x [~=, 7). The boundary con-
ditions for ¢; and A; are specified as the following. We
specify the Dirichlet boundary conditions for phase and
amplitude in the region of the domain where it is illu-
minated by the source. Everywhere else the boundary
conditions are based on the local direction of the char-
acteristics. If the characteristic line is pointed to the
outside of the domain, there is no need for boundary
conditions. If the characteristic line is directed to the
inside, we use G(0,0,0, 0) to calculate the numerical flux
for.the phase. For the transport equations the numeri-
cal flux is set to zero. The direction of the characteristic
line is simply determined based on the sign of the normal
derivative of the phase. In (r, #) coordinates, the normal
derivatives are simply d¢/dé and d¢/dr. The boundary
conditions for the reflected wave, ¢2 and Aj, are speci-
fied as the following. For r = 8, 6 = 7, and 8 = —7 the
boundary conditions are based on the local direction of
the characteristic line. The phase and amplitude of the
reflected wave at the surface of the cylinder is set equal
to the incident wave and therefore at » = 1 we specify
the boundary condition for ¢ and As according to

$2(1,0) = 61(1,0), A2(1,0) = A1(1,9).

The problem is solved numerically in (r, #) space and the
results are interpolated to a Cartesian grid. We use our
numerical method to solve the solution for the incident
and the reflected wave. We recover the amplitude of the
solution by adding the two solutions, assuming a value
of & = 3. The amplitude and phase are computed for
infinite k, but we use them for finite k. In Figure 5 we
present the exact solution computed from the expansion
of the soluticn in Bessel functions.

(38)

The multivalued solutions of the eikonal equation in
domains with constant index of refraction outside a con-
vex domain have a simple structure which could be ex-
ploited. If one considers a boundary fitted coordinate
system where one of the coordinates is radially outward
from the center of the body and the other coordinate 1s
the local coordinate on the surface of the object, then the
incident and reflected solutions of the eikonal equation
become unique in this coordinate system. We consider
reflection of a plane wave from a cylinder again. We ex-
tend the domain for 4 from (—7, 7) to the whole real line.
The multivalued solutions in this case are numerated by
the integers. For computational purposes we have to cut
the domain. We show the results for such a calculation
in the domain (—2w,2x). In Figures 6 and 7 we show
the multivalued phase of the incident and reflected wave
from the cylinder. In Figures 8 and 9 we show the cal-
culated amplitude.
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Amplitude of the solution, computed
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Figure 4: Amplitude of the computed solution outside a
cylinder

Amplitude of the solution, exact
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Figure 5: Amplitude of the exact solution outside a cylin-

der,k=3
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AMPLITUDE OF THE INCIDENT WAVE

PHASE OF THE INCIDENT WAVE
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Figure 8: Multivalued amplitude of the incident wave, 4,

Figure 6: Multivalued phase of the incident wave, ¢,

AMPLITUDE OF THE REFLECTED WAVE
PHASE OF THE REFLECTED WAVE
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Figure 7: Multivalued phase of the reflected wave, d2 A;gure o ultivalued amplitude of the reflected wave,
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5 Conclusions

We have developed finite difference methods for solving
the nonlinear PDEs that approximate high frequency so-
lutions of the reduced wave equation. These approxima-
tions can be very useful and powerful tools for calculat-
ing high frequency solutions since the mesh size for the
numerical solution of these equations is essentially in-
dependent of £. The geometrical optics approximation
consists of the eikonal system and the transpori equa-
tion. The behavior of this system is well understood
and our numerical method solves this system as long as
the phase stays single valued. To correct for the effects
of finiteness of frequency we also have developed numer-
ical methods for solving the classical asymptotic expan-
sion. This approximation can be calculated in situations
where geometrical optics equations can be solved.

We have also proposed a new system, the perturbed
geometrical optics system, to recover the effects of finite-
ness of frequency. This system has solutions that are
more general than those of the geometrical optics sys-
tem. In particular we have recovered solutions of the
Helmholiz equation around a shadow line. This system
is equivalent to the Helmholtz equation as long as the
phase stays a single valued function and the amplitude
is bounded away from zero everywhere. The major ob-
stacle in recovering all high frequency solutions of the
Helmholtz equation using the above approximations is
the multivalued nature of the phase. We have developed
some special procedures to recover some multivalued so-
lutions. One method relies on detecting a discontinuity
in the gradient of the phase and using that as a branch
surface to generate a new sheet of the multivalued solu-
tion. This approach can be applied to problems where
the multivalued nature of the solution is not known a
priori. Another approach for the exterior of convex ob-
jects is to use polar coordinates and extend the domain
to calculate phase in multiple copies of the original do-
main. These methods are special and a general method
needs to be developed for recovering all multivalued so-
lutions.

6 Acknowledgment

We wish to thank E. Harabetian for many helpful dis-
cussions.

Perturbed Geometrical Optics

References

98

[1] M. Born and E. Wolf, Principles of Optics, Pergamon
Press, sixth edition, 1989.

E. Fatemi, B. Engquist, and . Osher, ‘Numerical so-
lution of the high frequency asymptotic expansion for
the scalar wave equation ’, Journal of Computational
Physics 120 {1995), 145-155.

[2]

J. B. Keller, ‘A Geometrical Theory of Diffraction 7,
Calculus of variations and its Applications, McGraw-
Hill, New York, 1958, p. 27.

H-O Kreiss and J. Lorenz, Intlial-Boundary Value
Problems and the Navier-Stokes Fgquations, Aca-
demic Press, Inc., San Diego, 1989.

[4]

S. Osher and C-W Shu, ‘High order essentially non-

oscillatory schemes for Hamilton-Jacobi equations °,
SIAM J. Numer. Analys. XXVIII (1991), 907-922.

[5]



