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Abstract - The paper presents a three-dimensional 
finite element analysis applicable to all forms of 
sheet rotor, cylindrical, linear induction motor, as 
well as, helical motion induction motor. The 
analysis accounts for longitudinal and transverse 
end effects, skin depth and finite sheet thickness; 
furthermore, there is practically no restriction on 
the shape of magnetic circuit that can be 
considered. It yields detailed space profile of the 
state variables. The winding arrangement may 
include multi-polar system circumferentially and 
axially. The excitation produced by such winding 
is a helically traveling wave. The formulation 
results in a set of linear equations which are solved 
by point relaxation method. The solution algorithm 
employs power mismatch in the machine to 
indicate accuracy. The theory is supported by 
experimental results. 
 
Index Terms - AC machines, finite element 
methods, induction motors, numerical analysis.  
 

I.  INTRODUCTION 
The two-degree of mechanical freedom actuator 

capable of linear, rotation, or helical motion would 
be a desirable asset to the fields of machine tools 
and robotics. The magnetic circuits suggested for 
such a machine use laminations transverse to the 
direction of motion. 

In a previous paper [1], a tubular motor with a 
double helical winding was presented using a 

multi–layer mathematical model for the analysis. 
Mendrela and Turowski [2], Fleszar and Mendrela 
[3], and Mendrela and Gierczak [4] reported 
analysis of helical motion induction motor 
(HMIM) using the Fourier series method which 
takes into account the end effects. 

  Cathey [5] and Rabiee and Cathey [6, 7] had 
presented a helical motion induction motor and a 
procedure was developed for the determination of 
the equivalent circuit parameters even though the 
magnetizing inductance is small for a typical 
secondary of conducting sleeve design. It was 
shown that under appropriate definition of slip the 
Steinmetz equivalent circuit of an induction motor 
can be applied to this two degree of freedom 
machine. 

  In a later paper, Alwash, Mohssen and Abdi 
[8] presented a multi–layer theory analysis of 
HMIM with any number of axial and 
circumferential poles and that the method retains 
the true cylindrical topology of the machine under 
consideration. 

  The object of this paper is to present a three– 
dimensional (3-D) finite element analysis of 
HMIM, since the helical winding topology is not 
axisymmetric and, hence, cannot be analyzed 
using a two-dimensional finite element method. 
The formulation is derived using a variational 
approach, the problem of induction in moving 
media is being treated by the extension of a 
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previous finite element solution, of 
electromagnetic field problems [9, 10]. The 
solution, which appears to behave well 
numerically, employs a convergence test devised 
from power balance considerations in the machine. 

 
II.  THEORETICAL ANALYSIS 

    The general outline of the model is shown in 
Fig. 1. r, θ and z are cylindrical coordinates. The 
quantities pz, Vθ  and Vz represent axial pole pitch, 
circumferential rotor velocity and axial rotor 
velocity respectively. The rotor conducting sheet 
moves in both axial (z) and circumferential (θ) 
directions.  

 
 

        

 

Stator

Back iron 

Air gap 
Rotor
plate 

zp 
zp 

Pre – entry
zone 

Post – exit 
zone 

zV

V

r 
z

Axis of symmetry 

 
Fig. 1. General outline of the model. 

 
The solution, where ω represents the angular 

frequency, is based on the following assumptions: 
1.  The stator current is known and has two 

cylindrical components, namely J and zJ .   
2. All fields vary with time as exp ( )j t  and 

decay to zero at sufficiently far distances from the 
machine axis. 

3.  Displacement currents and laminated iron 
conductivity are not considered. 

  The above assumptions are quite common in 
machine analysis. It is noted that they impose no 
restriction on the topology of the machine in the rz 
– plane, thus allowing treatment of all practical 
forms of sheet rotor cylindrical linear induction 
motors. 

 

A.  Stator current density  
  It is assumed that the winding produces perfect 

sinusoidal traveling wave. The line current density 

oJ  may be represented as [8]: 

exp ( )o sJ J j t kz n     ,                  (1) 
where k and n represent the wave length factor 
defined below and number of circumferential pole 
pairs in helical system respectively. The stator line 
current density Js  is defined as:  

 exp( )s mJ J j  , 
where 

                1tan
g

n
k r

 


,                          (2) 

 
cos( )k

p
 

 ,                        (3) 

with  Jm,  , rg and p representing amplitude of line 
current density, helicoid angle, inner stator radius 
and normal pole pitch respectively.    
 
B.  Governing equations 

For a 3-D analysis, Maxwell’s equations require 
that the vector potential  zrA ,,  satisfies [9] , 
such that 

JA 












1
,                 (4) 

where A  and J  represent the three dimensional 
magnetic vector potential and the current density 
vector respectively. According to assumption (1), 
the above equation leads to two Euler equations in 
cylindrical coordinates (or three equations in 
Cartesian coordinates). Depending on the position, 
the current density takes the following values: 

Stator winding region   
  0J J .                    (5a) 

Non conducting region 
  0J .                           (5b) 

Rotor conducting sheet 

  J j A V B     ,                (5c)                     

where , V and B  represent rotor conductivity, 
three dimensional velocity vector and magnetic 
flux density vector. Equations (4) and (5), and the  
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zero potential conditions assumed at the outermost 
boundaries, as well as machine axis, specify the 
problem in differential form and should yield a 
unique solution for the magnetic vector potential. 

Now, the solution of equation (4) is known to 
minimize the energy functional  [12] 

 2 2 21
2 r zB B B A J rdrd dz



 
        
 ,(6) 

where   denotes the entire domain considered in 
the analysis; this may be simply verified by 
applying Euler’s theorem of variational calculus to 
show that (4) is the Euler equation corresponding 
to  as defined in (6). 
 
C.  Performance calculations 

Once the potential distribution in the system is 
known, it is possible to compute all quantities of 
interest. These include the rotor induced current 
density, flux density components, propulsion 
force, the rotational torque, the power supplied, 
the air gap power, the rotor ohmic losses, stator 
voltage, input power factor and the efficiency [9]. 
The performance parameters mentioned above 
require derivatives and integrals involving the 
magnetic vector potential. Only force calculations 
will be be considered here. 
    1)  The propulsion force: 

The calculation of propulsion force, in 
particular, requires some consideration, as there 
are three methods.  

The first method is the Maxwell stress method 
which states that the time average axial force Fz on 
a volume element can be calculated by integrating 
the electromagnetic stress over its surface, with Hr, 
Hθ, and Hz being the radial, circumferential and 
axial components of magnetic field strength vector 
and µ0 is the permeability of free space 

 

 *1 Re
2

e
z o r z

s

F H H ds
 

  
 
 .                  (7) 

 
  Choosing a volume which consists of a 

cylinder of radius R bounded at its ends by the 
outer boundaries, it is possible to write: 

 

   max

min

*Re
2

ze
z o r zz

R
F H H dz


   .            (8)        

    
    This requires finding the contribution to the 
force from all elements that span the radius R 
where the cylinder encloses the rotor. For a 
typical element shown in Fig. 2, the time 
average value of the force on the rotor conductor 
is given by: 

max min2z
o

RF z z      *. Re
ee

r z
e

B B  .   

(9)                     

 

 

 

 

 

 

    R 
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rH

zH
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r

z

 
Fig. 2. Typical element for the calculation of 
propulsion force. 

 
The second method is J B on a stator winding 

region where the time average propulsion force per 
unit volume is obtained by taking the z – 
component in (9), therefore 

  *1 Re
2

ee e
z rf J B      N/m3  . 

Hence, the time average propulsion force on an 
element can be written as: 

 












  dzrdrdBJF
e

r
ee

z
e


*Re

2
1 , 

and the total time average propulsion force on the 
rotor conductor now becomes: 

 *1 Re
2

ee
z r

e
F J B v      N,           (10) 

where  zrrv c   . 
The summation is carried out over all elements 

in the stator winding region. 
The third method is J B on rotor region 
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where the calculation of the force by  J B  on 

an eddy current region is similar to that on a 
current source region. The only difference being 
that the induced current density is used rather than 
the specified stator current density. For an iron 
cored rotor rotary-linear motor, this method can 
lead to errors as it neglects the forces which act 
directly on the iron. 
    2)  The rotational force: 

The time average rotational force per unit 
volume is given by 

 *1 Re
2

ee e
z rf J B  N/ 3m  

or  *1 Re
2

ee e
z r

e

F J B dv
 

  
 
     N, 

and the total time average rotational force on the 
rotor conductor now becomes 


e

eFF  ,                     (11) 

where the summation is carried out over all 
elements in stator winding region. The 
circumferential (rotational) torque can be obtained 
simply by multiplying the circumferential force by 
the radius of the stator over which the integration 
is carried out. 
    3)  The radial force: 

The radial component of the Lorentz force per 
unit volume on each element in a conductor is 
given by 

 * *1 Re
2

e ee e e
r z zf J B J B      N/ 3m . 

  Due to rotor circular symmetry of RLIM, the 
rotor experiences no radial force, therefore 

0
e

e
rr dvfF . 

 
III.  EXPERIMENTAL MACHINE 

To verify the theoretical results obtained 
through the computation, laboratory measurements 
were made on two experimental machines. The 
first model A was constructed by Cathey and 
Rabiee in [6,7].  It was an iron cored stator iron 
cored rotor machine. Extensive analysis for this 
model is made with standstill and variable speed 
analysis for the state variables.  

Model B was constructed by Alwash, Mohssen 
and Abdi [8] at the University of Baghdad.  The 
stator of this machine contains no iron and hence 
is considered as an open magnetic circuit. The 
model was tested with variable frequency under 
standstill conditions.  
Table 1. Machine parameters for Model A. 

Parameter   Value 
Stator length, m 182.8 
Phases 3 
Circumferential poles 2 
Axial poles 2 
Slots per pole per phase 2 
Slots per pole 6 
Slots, axial & circumferential 12, 12 
Normal coil width, mm 7.18 
Normal slot pitch, mm 10.78 
Normal pole pitch, mm 64.64 
Helicoids angle on primary, degrees 45 
Turns per coil 20 
Stator phase current, A 15 r.m.s. 
Frequency, Hz 60 
Circumferential pole pitch at inner 
stator radius, mm 52.62 

Air gap length, mm 2.78 
Steel shaft diameter, mm 25.4 
Copper sleeve thickness, mm 1.27 
Copper rotor conductivity, S/m 4.48×107 
Shaft relative permeability 750 

 
Table 2. Machine parameters for Model B. 

Parameter   Value 
Stator length, m 203 
Phases 3 
Circumferential poles 2 
Axial poles 4 
Slots per pole per phase 1 
Slots per pole 3 
Slots, axial & circumferential 12, 6 
Normal coil width, mm 7 
Normal slot pitch, mm 12 
Normal pole pitch, mm 36 
Helicoids angle on primary, degrees 36.3 
Turns per coil 160 
Stator phase current, A 2.3 r.m.s. 
Frequency, Hz 50/150/250 
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Circumferential pole pitch at inner 
stator radius, mm 50.27 

Air gap length, mm 3.5 
Steel shaft diameter, mm 25 
Copper sleeve thickness, mm 3 
Copper rotor conductivity, S/m 3.4×107 
Shaft relative permeability 56 
 
Tables 1 and 2 show the parameters of models 

A and B respectively. Table 3 shows the 
discretization data and CPU time for model A. The 
computer used was a Pentium 4 (2.4 GHz) PC. 

 
Table 3. Discretization data and CPU time for 
Model A. 

Number of element 325,247
Number of nodes 61,856
Number of edges 409,973
Total CPU time (hours) 1,238

 
IV.  RESULTS 

Figures 3 and 4 show respectively the variation 
of the propulsion force and the circumferential 
torque with respect to speed for model A at 60 Hz 
using the finite element method and equivalent 
circuit model adopted in  [6,7] for the sake of 
comparison. The two methods agree within 5% for 
the propulsion force. For the circumferential 
torque, it is clear that the finite element method is 
closer to measured values than equivalent circuit 
method while both methods agree with maximum 
deviation of 5.2 %. 
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Fig. 3.  Propulsion force against speed at 60 Hz for 
model A.  

The power of the finite element method, in 
addition to its high accuracy compared to the 
analytical methods lies in its ability to display the 
effect of finite dimensions (end effects) of the 
actual machine. 
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Fig. 4.  Circumferential torque against speed at 60 
Hz for model A. 
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 Fig. 5. End effects on propulsion force at different 
frequencies for model A. 
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 Fig. 6. End effects on circumferential torque at 
different frequencies for model A. 
 

To validate this, Figs. 5 and 6 show the 
variation of force and circumferential torque with 
respect to speed for model A at 60, 180 and 300 
Hz using the finite element method and equivalent 
circuit model. The results show that the end effects 
are prominent as frequency and speed increase 
[10] which affect the peak force and torque values 
when the finite element method is adopted. 

Figures 7 to 9 show the flux profile of the 
model for the three components of flux density at 
frequency of 60 Hz using three different slips. 
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Fig. 7.  Radial flux density distribution at 60 Hz 
for model A.   
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Fig. 8. Axial flux density distribution at 60 Hz for 
model A. 
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Fig. 9.  Circumferential flux density distribution at 
60 Hz for model A. 
 

Figures 10 to 13 show the space profile for the 
rotor current density, air gap power, propulsion 
force and circumferential torque distributions for 
model A at standstill and frequencies of 60, 180 
and 300 Hz where end effects are prominent and 
clearly visible. 

Figures 14 to 17 show the variation of line 
terminal voltage, input power, input power factor 
and efficiency with respect to speed for model A 
using the finite element method. 
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Fig. 10.  Rotor current density distribution along 
axial distance at standstill for model A. 
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Fig. 11. Air gap power distribution along axial 
distance at standstill for model A. 
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 Fig. 12. Propulsion force distribution along axial 
distance at standstill for model A. 
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Fig. 13. Circumferential torque distribution along 
axial distance at standstill for model A. 
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Fig. 14. Stator terminal voltage against speed at 
different frequencies for model A.  
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different frequencies for model A.  
 

1.0 0.8 0.6 0.4 0.2 0.0  
0  

 

20 

40 

60 

80 

100

Slip

E
ffi

ci
en

cy
 x

10
0%

300 Hz 

180 Hz 

60 Hz 

 
Fig. 17. Efficiency against speed at different 
frequencies for model A.   
 

Figures 18 and 19 show respectively the 
variation of propulsion force with frequency for 
model B using a hollow aluminum rotor and a 
solid aluminum rotor by introducing the numerical 
results from the finite element analysis and the 
computed results of the layer theory approach 
adopted in [8] against measured values at 
standstill. Figures 20 and 21 show respectively the 
variation of the circumferential torque with 
frequency at standstill for model B using hollow 
and solid aluminum rotor by introducing finite 
element results and layer theory results against 
measured values. 
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Fig. 18. Propulsion force against frequency for 
model B with hollow rotor. 
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Fig. 19. Propulsion force against frequency for 
model B with solid rotor. 
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Fig. 20. Circumferential torque against frequency 
for model B with hollow rotor. 
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The agreement between layer theory and 
experimental results lies within a maximum 
deviation of 7.6% while the agreement between 
finite element and experimental results lies within 
a maximum deviation of 3.9%. 

It is worth mentioning that in addition to the 
fact that the finite element method is closer to 
experimental results than the layer theory 
approach, the differences between the results of 
the layer theory approach and finite element 
computations increase with increasing frequency 
due to longitudinal end effects, which becomes 
more effective at higher frequencies. 
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Fig. 21. Circumferential torque against frequency 
for model B with solid rotor. 
 

V.  CONCLUSION 
  The 3-D finite element method has been used 

for the analysis of helical motion induction 
motors. The methodology presented is quite 
general as it lends itself to the analysis of tubular 
linear induction motors and cylindrical induction 
heating systems. It is shown for the models 
considered that longitudinal end effects are most 
effective at higher frequencies and speeds. An 
important conclusion inferred from our study is 
that end effects must play an important part in 
these machines. The 3 – D finite element method 
has been shown to be eminently suited to the 
analysis of helical induction machines. The results, 
displayed and discussed in the previous section, 
show clearly that the finite element results agree 
well with the experimental ones more than any 

other closed form technique. This may be 
considered as a fair justification of the analysis 
method proposed in this paper.  
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