The Newton-Raphson Method for Complex Equation Systems

Dieter Lederer
Institut fiir Elektrische Energietechnik, TU Berlin, Einsteinufer 11, D-10587 Berlin, Germany
Hajime Igarashi
Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporoc 060, Japan
Arnulf Kost
Lehrstuhl Allgemeine Elektrotechnik, BTU Cottbus, Postfach 101344, D-03013 Cottbus, Germany

Abstract—A formulation for the complex Newton-
Raphson method is proposed. The derivation is ob-
tained on the assumption of a nonanalytical equation
system. The method is applied to the finite element
calculation of shielding problems with sinusoidal ex-
citation and ferromagnetic material. An application
example for which measurement data are available is
given in order to judge the convergence characteristics
and the reliability of the proposed method.

I. INTRODUCTION

The Newton-Raphson method is a well-known and pow-
erful method for solving nonlinear real equation systems
which is required for example in the calculation of non-
linear magnetostatic problems with the finite element
method. In the case of sinusoidal excitation and nonlin-
ear material behavior, e.g. in the case of shielding prob-
lems with ferromagnetic material, the application of a si-
nusoidal calculation based on a specialized material model
leads to complex nonlinear equation systems [1], [2]. For
the solution process the Newton-Raphson method is cho-
sen and adapted to the complex case [3].

I1. BAsic INVESTIGATIONS

A. Analytical Systems
The complex equation system
Fi(A1,42,...,Ap) =
Ui(A1, A42,...,An) +Vi(A1, A2,...,A4,) =0 (1)
with the complex variables

A =&+

and i,k = 1,2,...,n shall be considered. The expansion
of (1) by Taylor series takes the form

n B.F,
F+ g 6—AjA.Aj = 0. (2)
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If the functions F; are assumed to be analytical, the deriv-
ative 8F;/0A; can be expressed following the Cauchy-
Riemann differential equations as

OF; 8U; .0V
LL L P el 3
54; ~ 8g g ®)
or as
OF; v, | oU;
= (4)

84; om; " ny
Equation system (2), which is a n x n complex system,
would have to be solved using (3) or (4). Applying e.g.
(3) and separating into the real and imaginary part, one
obtains

U; +Z (aU‘A.f, aV’A

)o@

i=1
V+Z( LAE + gg An,)=0. (6)

B. Nonanalytical Systems

As it will be shown in the next section, the considered
finite element formulation leads to a system which is not
analytical. Consequently, the expressions (3) or (4) cannot
be used. Therefore the following system shall be consid-
ered, which is equivalent to (1):

Ui(€1’£27"- ’nn) =01
‘fi(Eh&Z" ":En:ﬂlsn%' . a"]ﬂ) =0.

The Taylor expansion now is performed for the real and
imaginary parts & and nx:

QER,T’].!T)?!"'

U; A A =0, 7
-3 (Gg 29 + 3 om) ®
V;
V+Z(a§JAeJ 2 Am)=0- (®)

As the considered system is not analytical, (2) is not ap-
plicable to this system. Thus the system to solve will not
be a complex system with the unknowns AAg, but a real
valued 2n x 2n system with the unknowns A& and Ang.
For analytical systems, (7) and (8) are equivalent to (5)
and (6), which can be seen if the Cauchy-Riemann differ-
ential equations are applied.
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1II. FORMULATION FOR THE FINITE ELEMENT
METHOD

The application of the Newton-Raphson method. for
complex equation systems is related to nonlinear eddy
current problems with sinusoidal excitation and ferromag-
netic material. It is assumed that an appropriate material
model is used which allows a sinusoidal calculation in spite
of the nonlinearity. Such a model is the effective perme-
ability model: it uses the rms value of the magnetic flux
density, which can be obtained from the magnetization
curve, to define an effective value of the permeability and
the reluctivity, respectively. A detailed description can be
found in {4], [5].

A. Basic Formulation

From Maxwell’s equations one obtains
V x (vV xff)—!—njwff: Jo.

For two-dimensional problems, which shall be considered,
the only component of the vector potential is the z-
component. Thus it holds A = A& = (£ +]jn)&; and
Jo = Jo &;, where Jp is the exciting current density.

Applying Galerkin’s method with the shape functions
o, one gets

n

F,*Z (/uefr(ﬁx,m)Vanak df2 +j u/ﬂn Qiok dQ)Ak

=]
Qir(ér,m\)

- /Ot,;.]u dQ
Q

with 4,A = 1...n. veg(£x,7a) is the effective reluctivity
obtained by the mentioned material model. The nonlin-
earity of these equations comsists in the dependence of
Ve on the nodal values of the real and imaginary part
of the vector potential. Separating (9) into its real and
imaginary part results in

Py
)

U= 3 Quten mts = 3 P — [ azlode, (10)
k=1 k=1 Q

Vi=3 Pale+ 2 Qul€nma)me (11)

k=1 k=1

The system (10), (11) is not analytical which follows
from the Cauchy-Riemann differential equations. It holds

0Qi
3§ 6{; Z sz&k sz + Z k&kr (12)
8V; oQ;
Eoo 37?; ZQ:kﬂk Qi + Z kﬂky (13)
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where it is obvious that
i , Vi
8¢; 7 om;

For analytical systems (12) and (13) would agree. In
an analogous way it can be shown that 8U;/dn; and
—-0V;/0¢; do not agree, either.

B. Taylor Expansion

The expansion by Taylor series of (10) and (11) in ac-
cordance with (7) and (8) leads to

U; + Z Z (a;ztk ) +Qij] A&+
j=1 Lik=1 J

[ & (aQ,k

- P;j| An; =0,

)=
1) n]acs

(14)
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=1 Lk=1
LZ: (36?_,:k 771:) +Qz_1:| Anj = 0 (15)
=1 Lk=1

C. Ewvaluation of the Derivatives

The evaluation of the derivatives in (14) and (15) is
done using the magnetization curve of the ferromagnetic
material and the potential formulation. From (9) it follows

Qu _ 9

351. % (/Veﬁ” (&Ex,ma)VaiVag dQ)
]

aVeﬁ(EA,m\) Va, vak 4dq.
o 04

For the evaluation of the derivative of the effective re-
luctivity only one finite element shall be considered. The
reluctivity is taken to be constant in that element. Thus
the dependence on &, and 7, expresses the dependence on
the vector potential in that element:

A= Z(EA +im)ax,
y

(16)

where ) runs up to the number of nodes in the element.
Thus one obtains

Oven(§n,m1) _ Oven (BIBI d\B.| 0|B| alBy!)
0¢; 8\B| \8|Bz| 3¢  8|By| 9;
and
e (Mr, ) _ Ovest (BIB! 8|B.] &|B| 8|By|)
onj 8|B| \81B;| 9n;  O|By| 9,

where the derivative Sv.q/0|B| is determined from the
magnetization curve. |B| and |B;| are the rms values of



the Aux density and the component i of the flux density
in one element, for which the relation

Bl = /|Bal* + |By[*

is valid. They are taken to be constant, e.g. they are the
mean values in one element if no linear shape functions
are used. It follows

818l _ |Bal
d|B:| |B|
and
BB _|B,|
o|1By|  |Bi

According to the relation B = V x A one obtains for
the complex value of the flux density under consideration
of {16)

2_p pr 2A0A"
|Bz|” = B:B; = By oy
= -iZ(EA +jTJ‘A)0‘A:| I:-;—Z(&:\"jm)ax:l =
.ay py ¥ A

[ day, 2 day, 2
-[zes] [
From this equation one gets directly

8|Bz| _ Re{B.} 0,
9% 1B Oy
and in an analogous manner

8IB,| _ _Re{By}da;
0¢; |By| &z

The same procedure for dveq/On; results in

|Bz| _ Im{B.} day

31}3' - 182! ay,
1By — _I-m{By} %.
B, B, oz
Finally one gets
8Q:x :
0¢;
Oveg (Re{B:}dc; Re{B,} _f?_?f_a_) ,
/ga|B|( 1B oy B] 8z ) Yoverdh
8Qixr
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Herewith all derivatives are determined and the equation
system can be solved.

D. Structure of the Equation System

As shown in Section IILA., the system (10), (11} is not
analytical which leads to the described Taylor expansion
and thus to a 2n X 2n real valued system. Compared to the
analytical complex valued system (2) with the dimension
n, twice of the memory capacity is necessary.

The matrix consists of four n x n parts which are sym-
metric sparse matrices. The whole matrix however is a
nonsymmetric sparse matrix. It takes the form

[QE"‘QIQH_P]
Q:+P|Qr+Q

which shall be considered as symbolic: Q — terms related
to Qux; Q¢ - terms related to 9Q /9¢; ete.

IV. APPLICATION EXAMPLE

A. Problem Definition

The example considered, is a shielding problem: a steel
plate over a double line. This is a problem which was
set up at the TU Berlin in order to study the shielding
effect of constructional steel. A detailed description can
be found in [5].

The principal arrangement is shown in Fig. 1. The di-
mensions are: plate: b = 1390 mm and d = 3 mm; distance
of the conductors: & = 250 mm; distance between the plate
and the cable: A = 100mm. The origin of the cartesian
coordinate system is located in the middle on top of the
plate.

The cable consists of three conductors, each one made of
twisted copper wires and arranged in a triangle. In each of
them flows one third of the current I. For the calculation
the cable is modelled as one conductor with a cross-section
of 555 mm?.

The plate material is constructional steel St37. The
conductivity has been determined as & = 6.41 - 10° S/m.
The magnetization curve has been measured for the used
plate and is given in Fig. 2.

The goal is to determine the rms value of the magnetic
fAux density at the heights ¥ = Scm and y = 100cm
above the plate. The exciting current is sinusoidal with
the frequency f = 50 Hz and the rms value J = 900 A.
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Fig. 1. Principal arrangement
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Fig. 2. Magnetization curve of the plate
B. Results

In the following figures the result obtained by measure-
ments is compared with the result obtained by the de-
seribed calculation method. Figure 3 shows the rms value
of the magnetic flux density whereas Fig. 4 shows the
shielding factor, which is defined as

Sqp = gglog_BM‘isﬂ dB
Bshielded

and can be taken to judge the shielding efficiency. The
calculated and measured values of the flux density either
agree or the calculated ones are higher. As hysteresis losses
were not taken into account for the calculation, this be-
havior was to be expected.

The calculation was performed on a HP 755 Worksta-
tion. The linear system was solved using the ILUBICG
method with a convergence criterion of 10~7. Table I gives
information about the data of the calculation process. It
can be seen that the proposed Newton-Raphson method
for nonlinear complex systems allows a considerably fast
calculation of the interesting field quantities. Especially
the number of Newton iterations is very low, i.e. the pro-
posed determination of the derivatives leads to very fast
convergence of the Newton process, for which the conver-
gence criterion was set to ||AA]|/||A]] < 1073, The total
calculation time was 803s.

V. CONCLUSIONS

A method for solving nonlinear complex equation sys-
tems, based on the Newton-Rahpson method for real sys-
tems, was proposed. It could be shown that the described
method has very good convergence characteristics and
thus allows a considerably fast calculation of nonlinear
shielding problems. The reliability of the calculated re-
sults was proved by a comparison with measurements.

Summarizing, the proposed method is an appropriate
tool for the fast determination of the basic tendency of
the efficiency of shielding arrangements.

116

0.0002g
meas., y = S5em ——
calc., ¥ rbggm @
- meas., y = 100km -
0.00016 caic., ; =100cm +
0.00012
E
-]
8e-05+
4e-054
E S i el el e U h i A Sk SE T el I S e S Sals S Sei
c T T 1 T T T
0 01 0.2 0.3 [1X-3 0.5 0.6 0.7
x [m]
Fig. 3. Magnetic flux density (rms) above the plate
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Fig. 4. Shielding factor
TABLE I
DATA OF THE CALCULATION PROCESS
Refinement step 1 2 3 4 5
Newton iterations 2 3 3 3 3
Calculation time [s] 0.2 1.4 11.1 83.0 707.2
[|laAl/]Al 8e-4  9e-5 9e-5 8e-5 8e-5
Finite elements 112 448 1792 7168 28672
Matrix dim. {2n) 138 498 1890 7362 29058
Matrix elements 1716 6564 25668 101508 403716
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