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Abstract ─ A novel Matlab-based diffraction tool 
for the investigation of scattered fields around a 
two-dimensional Perfectly Electric Conductor 
(PEC) wedge is introduced. Analytical (Exact by 
Integral, as well as some High Frequency 
Asymptotic (HFA) techniques) and numerical 
(Finite-Difference Time-Domain (FDTD)) models 
are included. The FDTD staircase modeling 
problems are removed by the application of Dey-
Mittra Conformal approach. 
  
Index Terms - conformal FDTD, Dey-Mittra, 
FDTD, hard boundary condition, high frequency 
asymptotics, scattering, soft boundary condition, 
staircase modeling, wedge diffraction.  
 

I. INTRODUCTION 
The two-dimensional (2D) wedge diffraction 

is a canonical problem and plays a fundamental 
role in the construction of High Frequency 
Asymptotic (HFA) techniques [1-8]. It has been 
revisited several times for the last couple of 
decades. One of these revisits is presented in [9] 
where several HFA techniques, such as Geometric 
Optics (GO), Physical optics (PO), Physical 
Theory of Diffraction (PTD), Uniform Theory of 
Diffraction (UTD), and Parabolic Equation (PE), 
are compared with each other and 
advantages/disadvantages are listed. A Matlab-
based HFA numerical tool has also been 
introduced [10]. Numerical difficulties in and 
alternative computational approaches for complex 
diffraction integrals and series summation models 
are discussed in [11]. Finally, a novel, Finite-
Difference Time-Domain (FDTD) - based multi-

step numerical diffraction coefficient calculation 
method based on the has been introduced in [12].    

A novel Matlab based WedgeFDTD package 
is introduced in this study. The package uses the 
multi-step FDTD approach presented in [12] and 
results are compared against available exact and 
HFA models. Deficiencies of staircase 
discretization are removed by the application of 
Dey-Mittra Conformal Technique [14]. 

The 2D wedge scattering scenario is pictured 
in Fig. 1. The polar coordinates , ,r z  are used 
throughout the paper. The z-axis is aligned along 
the edge of the wedge. The angle  is measured 
from the top face of the wedge. The exterior angle 
of the wedge equals . The wedge is illuminated 
by a Line Source (LS). Source and observer points 
are (r0,0) and (r,), respectively.  

 
 
Fig. 1. The 2D PEC wedge problem, line Source 
(LS) illumination and three characteristic regions 
separated by RSB and ISB. 
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The scenario in Fig. 1 (
00    ) belongs to 

the Single Side Illumination (SSI) where the top 
face is always illuminated. The three regions are 
separated by two critical boundaries; Incident 
Shadow Boundary – ISB ( 0    ), Reflection 
Shadow Boundary – RSB ( 0    ). All field 
components – incident, reflected and diffracted 
fields – exist in Region–I. In Region–II, only 
incident and diffracted fields exist. Only diffracted 
fields exist in Region–III. 

If the source is in ( 0      ), both faces 
are always illuminated and this is called Double 
Side Illumination (DSI). In this case, all three field 
components exist in regions 0(0 )      and 

0(2 )        . There is no reflected field in 

0 0( 2 )          . 
 The field (for exp( )i t ) outside the wedge 

satisfies  
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the Boundary Conditions (BC) 

      0 on 0,0 o .r /s ku nu              (2-a) 

and the Sommerfeld’s Radiation Condition (SRC) 
at infinity: 

                 0.
r

duLim kr iku
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   
 

            (2-b) 

Function us represents the z-component of electric 
field intensity Ez (TM), while function uh is the z-
component of magnetic field intensity Hz (TE), 
which, in acoustics, refer to acoustically soft 
(SBC) and hard (HBC) wedges, respectively. 
 

II. ANALYTICAL MODELS 
The problem has analytical exact as well as 

HFA solutions. Only analytical exact solution by 
integral and UTD model are given; the rest can be 
found in [9-12].  
A. Exact solution by integral 
       The diffracted field solutions with SBC and 
HBC for both SSI and DSI are presented by 
Bowman and Senior in handbook [16] as: 
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Total fields ,
,

t BS
s hu  can be obtained by adding GO 

fields 
                  , ,

, 0 , , 0/ / ,t BM d BM GO
s h s h s hu u u u u             (4) 

where GO field that under LS excitation is given 
as follows: 
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for SSI and  
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for DSI. 
 

B. The UTD Model 
The UTD diffracted fields are in the form of 

       ,
, 0 ,

e .d UTD UTD
s h s h

jkr
u u d

r


                   (6) 

where (2)
0 0 0( )u H kr  and the time dependence 

is j te  [6]. According to the UTD, the diffraction 
coefficients for SBC and HBCs with line source as 
follows: 
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where 0     , 0      and the Fresnel 
function is 
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L , g   are determined as given in [13] by: 
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Here,    2N n      are the integers 
which most nearly satisfy the last equation given 
in (9). Note that, the cotangent functions in (7) 
become singular at ISB/RSB and are replaced with 
[6]: 
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for small . The UTD based total fields are then 
obtained by adding the GO fields appropriately: 
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with the GO solutions given as for SSI 
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and for DSI ( 0      ) 
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Two examples are given in Figs. 2 and 3, where 
analytical exact solution is compared against the 
UTD model. Both total and diffracted field 
variations around the wedge are plotted. Figures 2 
and 3 belong to DSI/HBC and SSI/SBC, 
respectively. Angles of incidences in these plots 
are 110º and 90º, respectively.  As observed, 
results agree very well [10]. 
 

 

 
 

Fig. 2. (Top) Total, (Bottom) Diffracted fields 
around the PEC wedge; Exact by series vs. UTD 

699USLU, SEVGI: MATLAB-BASED VIRTUAL WEDGE SCATTERING TOOL



solution (HBC, 240   , f=30MHz, r=50m, 
kr=31.4). 
 

III. FDTD MODEL 
The Finite-Difference Time-Domain (FDTD) 

method is a pure numerical technique where 
Maxwell equations are directly discretized in the 
time-domain. Since its first introduction [13], it 
has been widely used in variety of EM problems. 
A general, multi-step FDTD-based diffraction 
model under the line source illumination is 
introduced in [12] where diffracted fields under 
any source/observer locations can be extracted. 
Results are calibrated via comparisons against 
analytical exact solutions as well as the UTD and 
PE models. 

 

 

 
 

Fig. 3. (Top) Total, (Bottom) Diffracted fields 
around the PEC wedge; Exact by series vs. UTD 
solution (SBC, 350   , f=30MHz, r=50m, 
kr=31.4). 
 

The FDTD-based wedge scattering model 
uses one of the two cases presented in Fig. 4. 

Here, a line source is injected to the zE ( zH ) 
component in the TMz (TEz) model. 

 

 
 
Fig. 4. The 2D FDTD cells on the xy-plane and 
locations of the field components. 
 
       The 2D–FDTD (TMz type, i.e., soft BC) 
equations (with Hx, Hy, and Ez components) on the 
discrete xy–domain are: 
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The 2D–FDTD (TEz type, i.e., hard BC) equations 
(with Ex, Ey, and Hz components) on the discrete 
xy–domain are 
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Here, i and j are labels of the discrete mesh points, 
x and y are the mesh sizes along x and y axes, 
respectively, and t is the time step. Medium 
parameters are permittivity (), permeability (), 
and conductivity (). Note, 1 / 2n n   refer to 
t/2 time delay between electric and magnetic 
field computation time instants [13]. 

According to the method presented in [12] the 
diffracted fields are extracted for SSI as follows: 
 First, FDTD is run for the PEC wedge and 

scattered fields are stored at n-receivers located 
on a circular path around the tip. This yields 
total fields; incident, reflected, and diffracted 
field components in Region II; and only the 
diffracted fields in Region III.  

 Then, the wedge is removed, FDTD is run for 
free-space and scattered fields are stored with 
the same receivers. This yields incident fields 
all around. 

 Finally, bottom face of the wedge is removed 
and top face is stretched to take up the entire 
transversal section of simulation space. Then, 
FDTD is run for the third time. The stored 
fields yield reflected fields on the upper half-
plane.  

The three pulses - the incident ,inc FDTD
hu , 

reflected Re ,fl FDTD
hu , and diffracted ,d FDTD

hu  - are 
obtained using the three-step stored data. The 
related diffracted fields in the frequency domain 
are then extracted by the application of Fast 
Fourier Transform (FFT) as 

,( ) { ( )}d d FDTDu f FFT u t . For DSI, a replica of 
third step is requires for the bottom face of the 

wedge. The numerical diffraction coefficient is 
then obtained via         
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IV. DISCRETIZATION AND DEY-

MITTRA APPROCH 
The FDTD procedure summarized above is 

calibrated against analytical exact as well as HFA 
models. It is shown that the method works very 
well under arbitrary source/ observer locations 
with the standard Yee model using the staircase 
discretization, except for angles near the bottom 
face of the wedge. In staircase approximation, 
when the center of cubic cell is embedded inside 
the PEC object, all surrounding electric fields of 
this cell are set to zero. The TM mode fits 
perfectly with the staircase approximation because 
tangential electric fields coincide with the third 
dimension. On the other hand, the TE mode is 
problematic as illustrated in Fig. 5. As observed, 
the staircase approximation leads to spurious 
diffracted fields which can erroneously alter 
results significantly.  
 

 
 
Fig. 5. Physical and non-physical case for the TEz 
problem (thick arrows show incident and reflected 
waves, thin arrows show tip-diffracted waves). 
 
      In general, one can neglect staircase 
approximation error by selecting sampling 
resolution greater than / 60 . However, this 
increases computational burden proportionally and 
it is not suitable method for dealing with large 
problems and problems where phase information 
is crucial (as many as /100  may not be 
adequate). 

Several methods are proposed to overcome 
staircase problems. Non-uniform gridding based 
on using smaller cells around the object is one 
approach, but the pay-off is the increase in total 
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number of FDTD cells and memory. Another 
approach is to use conformal FDTD models based 
on integration contour deformation around curved 
object being modeled and applying Faraday’s law. 
Then, cell shape is changed to fit boundaries of 
modeled object. Among existing conformal 
models, Dey-Mittra technique described in [14] is 
found to be the most effective one here for the 
wedge problem. Fundamental steps of the Dey-
Mittra technique are summarized below through 
cases shown in Fig. 6. 

In Fig. 6a, slanted object cross slightly into 
top right cell. If the parameter )/ (s x y  (s is the 
small area in the figure) is less than R1 (which is 
the key parameter specifying numerical stability) 
one can neglect this penetration and set all four 
surrounding electric fields to zero for the top right 
cell. On the other hand, if Faraday’s law is applied 
and integrated along the contour of area A1 for top 
left cell one can obtain: 
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  (20) 

 

 
 

 
Fig. 6. Dey-Mittra conformal FDTD scenarios. 
 
        In Fig. 6b, the ratio of 2 )/ ( yA x  is larger 
than R1. In this case, applying Faraday’s Law to 
the top right cell and integrating over the contour 

of area A2 gives the update equation for Hz on the 
top right cell despite the fact that it is in PEC. 
Noting that two electric field components reside in 
PEC and set to zero we have: 
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In Fig. 6c, applying Faraday’s law and integrating 
along over the contour of area A3 gives: 

     

1/2 1/2

0

( / 2, / 2) ( / 2, / 2)

(0, / 2)
 

3 ( / 2, ) ( / 2,0)

n n
z z

n
y

n n
x x

H y H y

E y yt
A E x y f E x g

     

    
      

 (22) 

Despite its accuracy of modeling curved or slanted 
objects, Dey-Mittra conformal technique can cause 
instabilities. For this reason, time step should be 
reduced depending on the required accuracy. 
Stability analyses of several conformal methods 
are investigated in [15]. Here, selection of the key 
parameter R1=0.0025 requires %30 reduction of 
time step below the normal limit of stability. 
Another handicap of using Dey-Mittra conformal 
technique is that it requires complex mesh 
generation for calculating intersection points of 
unit cells and boundaries of the object modeled.  

Figure 7 compares Dey-Mittra and staircase 
discretization models. Here, a 60 wedge is 
illuminated with a line source at 160  . As 
observed in Fig. 6a, simulation results with Dey-
Mittra conformal FDTD model agrees very well 
with analytical exact solution everywhere. On the 
other hand, staircase approximation significantly 
fails to yield correct behavior near the bottom face 
of the wedge. Things will get worse when both 
faces of wedge illuminated (DSI). Dey-Mittra 
conformal FDTD method fits exact results well. 
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Fig. 7. Exact Solution vs. FDTD for (Top) 
Staircase approximation (Bottom) Dey-Mittra 
model. 
 

V. THE WedgeFDTD PACKAGE AND 
EXAMPLES 

A novel Matlab-based WedgeFDTD package 
with the front panel given in Fig. 8 (showing a 
time instant just before cylindrical waves 
emanating from a line source hits the top of the 
wedge) is developed to simulate scattered fields 
for a 2D PEC wedge. Results are compared 
against analytical exact integral method as well as 
the UTD model. The wedge is discretized with the 
Dey-Mittra approach. The program is designed 
with using both Matlab and Java swing library 
components. The interface of the program is 
divided into two panels as left and right. The user 
can enter the FDTD and simulation parameters 
from the left panel. At the bottom of this panel, 
user may select simulation results and 
visualization of different wave pieces. Figure 9 
shows a late time instant, showing all – incident, 
reflected and diffracted – field components. The 
right panel is reserved for the FDTD visualization 
and simulation results. Three tabs are placed at top 
for this purpose. 
       The tabs are activated after the corresponding 
simulation type is clicked from the left panel. Also 
user can select the color map used for FDTD 
visualization from the popup menu which is 
placed at top right of this panel. Video recording 
property is embedded in program via external 
Mencoder application to reduce video size. For 
this purpose, one can use the record button which 
placed at left top of this panel. Bottom panel is 
dedicated for progress information of the 
simulation and dynamically appears while the 

simulation is running. The slider which separates 
the left and right panel enables 
enlarging/compressing panel sizes via horizontal 
scrolling. User can also export simulation results 
by using the standard MatLab figure toolbar.  
 

 

 
 
 

Fig. 8. The front-panel of WedgeFDTD Package. 
   

 
 
Fig. 9. The front-panel of WedgeFDTD Package  
showing reflected and tip-diffracted waves.  
  

A few examples are included here. The first 
example is a TMz EM or soft BC acoustic problem 
and belongs to a scenario with a 60  wedge apex 
angle, illuminated by a 20 MHz line source 
located 70 meters from the tip with the incidence 
angle120 . Total and diffracted fields are shown 
in Figs. 10 and 11, respectively. 

The second example is a TEz EM or Hard BC 
acoustic problem which belongs to a wedge with 
30 interior angle, illuminated with a 30 MHz line 
source whose distance from the wedge is 80 
meters and incidence angle is 45 W. The total and 
diffracted fields are observed at a distance of 50m.  
Results are given in Figs. 12 and 13, respectively. 
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Fig. 10. Total Fields vs. angle computed with both 
FDTD and exact integral models ( 300   , 
f=20MHz, r=70m, 

0 120   ). 
 

 
 

Fig. 11. Diffracted fields vs. angle solution 
computed with the FDTD, UTD and exact integral 
models ( 300   , f=20MHz, r=70m, 

0 120   ). 
 

 
 

Fig. 12. Total Fields vs. angle solution computed 
with FDTD, UTD, and Exact integral models 
( 330   , f=30MHz, r=80m, 

0 45   ). 
 

 
 

Fig. 13. Diffracted fields vs. angle solution 
computed with, FDTD, UTD, and Exact integral 
models ( 330   , f=30MHz, r=80m, 

0 45   ). 
 

VI. CONCLUSION 
A novel Matlab based tool is developed to 
investigate wedge scattering with the Finite-
Difference Time-Domain (FDTD) method. 
Diffracted fields are extracted and are compared 
with the results of High Frequency Asymptotic 
(HFA) models. Dey-Mittra conformal FDTD 
method is used to eliminate staircase modeling 
deficiencies and results are presented. Excellent 
agreement among the models for both cases shows 
the success of the VV&C procedure [17]. 
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