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Abstract

The numerical solution of Maxwell’s equations is a computationally intensive task and use of high-performance
parallel computing facilities is necessary for the larger class of practical problems in scattering, propagation and
antenna modeling. It is therefore necessary to carefully consider algorithm optimizations aimed at improving the
code’s run time performance on the computing platform employed. Although some performance improvement can
be derived from compiler-level optimizations, further speed-up may involve manual effort in algorithm restructuring,
data layout , and parallelization. This paper focuses on the manual optimizations used to improve the performance of
a moment method code for the analysis of a cylindrically periodic structure, as is the case with a jet engine. We
describe the steps taken which resulted in nearly two orders of magnitude improvement over the original version of
the code. A 16-processor shared-memory CRAY-C90 vector supercomputer was employed. Our optimization took
advantage of SSD its solid-state storage, enabled better loop vectorizations, parallelized the matrix_fill routine, and
called appropriate CRAY-C90 library routines.

1 Introduction

The application of analytical and numerical techniques in conjunction with advanced architecture and software
has allowed more accurate simulations of very large electrical systems. In this paper we consider the parallelization
and optimization of a code for evaluating the Radar Cross-Section (RCS). This is a method of moments (MoM) code
specifically applied to jet engine scattering and exploit the inherent cylindrical periodicity of the engine geometry to
reduce computation. As is the case with all MoM codes, a dense system of equations results from the discretization
of the jet engine blades using the usual subsectional surface basis functions [1]. This code solves the dense matrix
system via LU decomposition.

Typically, the most dramatic speed-up after code optimization is achieved by concentrating on the matrix fill
and solution step (LU decomposition or the inverse FFT employed in the iterative solver) of the code. We therefore
concentrate on optimization techniques which emphasize performance improvements for these steps and are aimed at
reducing both CPU and wall-clock time.

This paper is organized as follows. Section 2 reviews the general concepts of performance optimization and
simple examples are included to demonstrate the crucial role of optimization. Concepts of parallelization are
discussed in section 3. Vectorization and parallelization techniques are applied to the MoM codes of interest in
section 4 and the resulting speed ups are shown, following a short introduction to vectorization. Further
optimizations of the MoM code are mentioned in the conclusion.

2 Optimization Overview

The first step in optimizing a computer algorithm is to evaluate its overall performance. This stage is aimed
at identifying the critical sections of the code that consume most of the execution time and various profiling tools
may be used to gather related runtime statistics. Figure 1 shows an example of the output from the CRAY-C90
flowtrace profiling tool applied to the unoptimized original version of the MoM code. The routines which require
most of the most execution time are:

DYADFREE: calculates the free space dyadic Green’s function.
FSGCYL: part of the general double surface integration routine called from the Inverse FFT routine.
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VECT_DIFF: called mostly from the matrix fill routine to find the centroidal distance between source and

observation triangles, to compute the edge lengths of the triangles, etc.
I_PARAMS: used to calculate the geometrical parameters for the closed-form integration routine which computes the

potential integrals for uniform and linearly varying surface sources distributed on a planar polygon. This integration

routine s part of the matrix fill routine.
AC_INTCYL: part of the general, double surface integration routine called from the matrix fill routine.

Routines Using the Most Time

DYADFREE

. ALL_OTHERS
% .

1%

FIGURE 1: Runtime Profile of the most dominant routines

Having determined the most dominant sections, requiring the largest fractions of time and/or resources,
effective code optimization can begin. Applying an optimization technique may involve the following steps (See

Figure 2).
.| Source code
|
v v v
1. Hand-tuning 2, Preml'oceasor 3. Comniller front end
Hand-tuned Preprocessor- Intermediate
source code tuned source language code
v
l l 4. Back end Ionﬁmiution

Object code

FIGURE 2: The optimization process

At the hand-tuning stage the user performs a number of optimizations at the source-code level. Examples of
such optimizations include reordering programming statements or expressions and changing the memory access
patterns of loops [2, 3]. Next, an optimizing preprocessor, if available, takes the source code and performs
transformations enabled by user-selectable switches. Typical examples are dead code elimination, inlining,
interprocedural analysis, library-call generation, etc. The output source code is also optimized to take advantage of
architectural features of the host system. Then the output source code is submitted to the compiler whose front end
translates it into intermediate language (IL). Its back end optimizer then translates the IL code into machine
language and in this process it may apply a wide range of optimizations at the IL level, depending on the user-
selectable flag settings which invoke specific sets of optimizations.
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The tuning strategy should, of course, be aimed at producing the maximum performance gain with minimum
effort. For the example, if we increase the performance of DYADFREE by 20% (see Fig. 1), the program will
improve by 4.5% because DYADFREE takes 21.8% of the total time. If we also speed-up FSGCYL by 20%, the
overall improvement will be 2.5%. Thus, sections of code that take the highest percentage of CPU time should be
investigated first. It is of course important that the numerical results be checked after each optimization step to
ensure the correctness and preciseness of the code after the reordering operations.

The sufficiency of the overall program performance is subsequently assessed either intuitively, or more
formally, e.g. by using different performance characterization tools which provide bounds on the achievable
performance of the code [4, 5]. A performance bound hierarchy model may successively include the effects of
machine peak performance, high level application workloads, compiler-inserted overhead, compiler generated
instruction schedule, cache effects, etc., and may be applied to loops, procedures, sections or entire codes. If later
effects can be reduced or eliminated, performance may be made to approach earlier bounds which represent the
potential performance of the application, if the effects of all later levels are eliminated.

Once a program has been sufficiently optimized for a single processor, the next step is to assess whether the
application code can take advantage of multi-processor computing platforms. If so, the application is then
paralielized and optimized for paralle! execution.

2.1 Optimization Examples

It is hard to overstress the importance of optimization. The examples below demonstrate some simple techniques that
can significantly improve code performance and speed-up. Details on the employed techniques themselves and
further examples may be found in [2, 3].

Examplel: (An Array-Processing Example)
Consider the two codes shown in Figure 3 which perform element-wise array multiplication [6]. These codes are
clearly seen to be functionally equivalent.

doi=ln do j=In
doj=ln doi=1nr
(i )=c(ij)+ali)*bli) oliji=cli)+alij)*blij)
enddo enddo
enddo enddo
{a) stride_n.f (b) stridel.f

FIGURE 3: The Array Multiplication. (a) Original. {b) Loop interchanged

The only difference between the two examples in Figure 3 is that the array elements are referenced in a
different order. All runs were made on an IBM RISC System/6000, Model 530 with a 64KB cache. The arrays were
all declared REAL*8. A timing loop was inserted around the loops in the examples so that the reported time is the
average of 50 million inner loop iterations, Figure 4 shows this time (in microseconds), as a function of n.

Yime{ {(Microsecond)
QO = N Wk O

10 25 37 S50 160 166 200 333 500
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FIGURE 4: Performance on a RISC Svtem6000 Model 530 with 64 KB data cache

As seen in Figure 4, the performance differs significantly between the two codes. For small n, there is little
difference in performance, but as n grows, stridel runs significantly faster then stride_n. In FORTRAN, arrays are
stored in “column major order”, implying that the leftmost subscript changes more rapidly as memory-adjacent
elements are accessed. In the stridel routine, successive iterations of the inner loop access array elements that are
adjacent in memory. That is the array elements are accessed in the same order as stored in memory.

However, in stride_n successive iterations of the inner loop access array elements that are stored in
memory n entries apart (one array column) in memory. In this case the arrays are said to be accessed with stride n.
When a single element is read into the processor, adjacent elements (comprising one “cache line”) are automatically
brought into the high-speed cache memory along with it. The user has no choice regarding this automatic procedure
of cache loading. Clearly, if all entries brought into the cache are soon referenced(as in stridel), there is a memory
access delay only for the first element in each cache line that the processor reads in. However, if other entries in this
line are referenced much later (as in stride_m), the line with the referenced entries may get replaced in the cache
before they are referenced; referencing an element that is in the cache is called a cache hit, otherwise the reference
is a cache miss and suffers a delay called the miss penalty. The advantage of the stridel code is that there is roughly
one miss per cache line of elements accessed, whereas almost every access to an element is a miss in stride_n code
- unless n is small enough so that entire array fits in cache and remains there indefinitely, This scenario is easily seen
in Figure 4, where both stridel and stride_n versions take the same time to run for <50 : 3 arrays of 50X 50X 8

bytes = 60 KB < Size of the Cache (64KB). Obvicusly, an understanding of the machine’s cache structure is
important in writing code routines that have the best potential for optimum performance.'
Example 2: (Matrix Multiplication Example)

As another example, let us consider the three codes below (see Figure 5) which contain different matrix
multiplication algorithms. All three codes produce the same end mathematical results. The differences are in the
loop index order and the procedure used for the execution of the matrix multiplications. The first two algorithms
differ in the loop index order and the third one takes advantage of matrix block multiplication.

doi=ln [Gojoin
dok=In do k=1,n
doj=1n doi=in
oij)=clij)+alik)*b(kj) olij)=clij)+ali k)*blkj)
enddo enddo
enddo enddo
enddo enddo
(a) IKJ formulation ®) JKI formulation
do ig=1,nnb ! blocking loop
do jj=1mnb ! blocking loop
do kk=1,n.nb ! blocking loop
do i=ii,fi+nb-1 ! loop within block
do j=jj.jj+nb-1 ! loop within block
s=c(jii)
do k=kk.kk+nb-1  !loop within block
s=s+a(j,k)*biki)
enddo FIGURE $§: Three Formulations of Matrix
clj.i)=s Multiplication
endde
enddo
enddo
enddo
(c) Block formulation

! Although CRAY has no cache, its memory is divided into multiple banks with cycle time >> 1. Problems similar to
those described in Example I occur if not all banks are referenced, i.e. if GCD(stride, number of banks) # 1. GCD
(Greatest Common Divisor) is always 1 if stride = 1.

11¢g
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The performance of the three codes in Figure 5 is illustrated in Figure 6 based on runs made on a RISC
System 6000 workstation with a 64 KB cache. As can be seen the IKJ algorithm exhibits the worst performance
because successive iterations of the inner loop access elements of arrays & and ¢ with stride n, resulting in multiple
cache misses. Accesses to b and ¢ are stride 1 in the JKI formulation, resulting in much fewer misses; however for
large n, the arrays do not fit in cache and some misses still result from the fact that array elements have been replaced
in the cache before they are rereferenced. Blocking is a technique for large arrays to reduce cache misses in nested
array-processing loops. This is done by processing the data in blocks or strips which are small enough to fit in the
cache. The principle behind blocking is that for every array element brought into the cache we wish to perform as
many of the computations as possible on that element before it is forced out of the cache by other program actions.
The blocking formulation of matrix multiplication algorithm with a blocking factor of 50 has much better
performance (for models with a 64KB cache) than the JKI or IKJ formulations for large arrays. We note that the
CPU timing for the fourth routine, esslp2, shown in Figure 6 refers to measurements of the engineering/scientific
library subroutine (esst) for performing matrix multiplication. This library has been hand-coded to take maximum
advantage of instruction overlap in the machine [6]; details of such proprietary libraries are, however, unavailable to
users.

Time (sec)

FIGURE 6:; Total Run Time of Different Matrix Multiplication Formulations.

3 Basic Concepts of Parallelization

Once a program is sufficiently optimized on single-processors (relative to some goal), the next step is to find if
parallelization can be used to speed up the operations/algorithms that consume the most CPU time. Many algorithms
are serial on some levels and parallel on others. For instance, an iterative system solver can be parallelized at the
matrix-vector product level to scale its performance, even though these solvers are inherently serial at the highest
(outermost) iterative level. When parallelizing a code, one must consider the type of multi-processor platform
available. Message passing and shared-memory multi processor architectures require different parallelization
paradigms. In the message-passing (distributed-memory) architecture, see Figure 7(a), each processor has its own
local memory space and communication among the processors is done by sending explicit messages through the
interconnection network. The SP2 is typical of distributed-memory architecture. In the typical shared-memory

INTERCONNECTION NETWORK @ @ ......................................................... {__;’__]

| INTERCONNECTION NETWORK |

i

Global Memory |
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(a) ®)
FIGURE 7: Two Parailel Processors Interaction Paradigms.. (a) Message-Passing (b) Shared Memory

architecture, see Figure 7(b), all processors share the same global memory space. In this case, the processors
communicate implicitly simply by accessing the same memory, which allows them to share code and data.

Example 1 (Matrix-Vector Product Example for Shared-Memory machine):
As mentioned above, the most critical (time consuming) operation in an iterative solver is the matrix-vector product.
The serial version of a code for carrying out the MATRIX-VECTOR product is given in Figure 8(a). This sequential

algorithm requires 7 > multiplications and additions resulting in O(n°) runtime complexity.

procedure MAT_VECT(4, x, ¥) procedure MAT_VECT(A, x, y)
begin ' i
doi;=lton doall i;=lton
do j:=Iton e
S Mik=yli)+AGI); g
end do
end do
end MAT_VECT end do
end MAT_VECT
(a) (L))

FIGURE 8: Matrix-Vector Product. (a) Serial Algorithm. (b) Shared-Memory Implementation.

One way of expressing parallelism on a shared-memory system is through the parallelization of the iteration
loop. Basically, each iteration can be divided among the processors and executed concurrently (in paraltel). Full
parallelism is achieved if a sufficient number of processors is available. If there are fewer than n processors, some
or all processors may execute two or more iterations. For the serial (i.e. uniprocessor) program in Figure 8 (a),
consider a particular value { and the execution of the statement S for the iterations j=i, 2...» of the innermost loop:

y® = y® + AG, 1)"x(1)
y( = y@) + AQ. 2)"x(T)

As seen, the value assigned to y(i) in the first iteration is used in the second and, thus, there exists a “loop-
carrier dependence” from S to S preventing parallel execution of multiple j loop iterations. This dependence could
be broken by computing p subtotals for y(Z) on p processors and then summing these subtotals in parallel. However,
this modification of the code would violate Fortran precedence miles and thus may alter the numerical precision of
the results. In contrast, the i-ioop can be executed in parallel by rewriting the code as in Figure 8(b). In this case
there are no conflicts between outermost iterations of the i-loop; that is, element y(i} is assigned and used on that
iteration only. A sequential do-loop that has no conflicts is called doall-loop. Suppose n processors are available for
the execution of the doali-loop. The compiler will then assign the work in such a way that each processor executes
the highlighted portion of the code for one value of i in Figure 8 (b). Whereas each element of y is computed
sequentially, different elements are computed in parallel. For p processors where p < n, the compiler will distribute
the y elements to the processors as equitably as possible. Hence, the peak performance of the doall-loop on p

processors { p <n) results in O(H2 / p) run time complexity for the code in Figure 8(b).

4 Moment Method Code Optimization on CRAY-C9%0

4.1 Moment Method Fundamentals
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The method of moments (MoM) is one of the standard approaches for the solution of a surface and volume
integral equations. This solution technique can be applied to a metallic, homogeneous dielectric as well as
inhomogeneous {7]. The boundary integral equation is of the form

HI7GE7)ds= () "
a8

where J(7)denotes the unknown current density, G(7,7") is the pertinent Green's function and J7(F) defines

the excitation. Note that the parameters 7 and 7 refer to position vectors for the integration and observation points,
respectively. The latter is the location at which the integral equation is enforced. In the context of the moment
method, the observation point is placed at a set of discrete points over the illuminated structure to yield a
corresponding number of equations. Introducing the subsectional expansion

N
JF=3,1.1,.() @
=l
for the surface currents, where f; (7) is the expansion basis over the nth pair of triangles [1], we obtain a discrete
system of equations for the solution of the unknown coefficients I,. We typically write this system as

(2], {1, }={V,} )
where [Z],,, isthe N X N impedance matrix whose elements are computed from
Z,,=§{ 7. 7.5 GE.7)ds9s @
s, s,

and

v, <§| £, E~()ds )
Sm

where m and n are indices on the edges of the surface facets §_( S, ) denoting the surface area over the mh testing
(nth integration) triangle pair. Because of the Green’s function {8],

GF,F)=Ae ™1 F-FI ®)

where A is a constant and k is the wavenumber, the matrix [Z] is fully populated and this is a distinct feature of the
moment method. The most popular and straightforward approach is to perform an LU decomposition of [Z}] and
then solve for {I,}. As noted above, this is one of the most time consuming steps of the code and must be optimized
for optimum CPU performance. For our specific application of jet engine scattering, a last step is the computation of
the fields at a plane in front of the engine and the generation of the modal scattering matrix [9]. The modal scattering
matrix is then used for the propagation of the fields through the inlet duct and the computation of the scattered fields
due to a given excitation field.

In the following subsection we describe the optimization of the moment method code for jet engine scattering
on a 16 processor, shared-memory CRAY-C90 vector supercomputer. An interesting aspect of this code is the use of
a cylindrically periodic Green's function which takes advantage of the jet engine blade periodicity. As 2 result, the
computational domain is reduced to a domain over a single blade and this yields a reduction in the number of
unknowns by a factor equal to N,, the number of blades (typically 20 to 30). However, to take advantage of blade
periodicity, it is necessary to decompose the excitation field into cylindrical duct modes and to loop through all of
the modes which are allowed to propagate unattenuated [10, 11, 12]. The scattered modes and subsequently the
corresponding fields due to each mode is then computed by carrying out an inverse cylindrical Fourier transform.
Although, this modal decomposition may be more expensive for single angle computations, this disadvantage
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disappears when multiple excitations are considered. Most importantly, the mode by mode excitation is particularly
attractive for parallelization since the computation for each mode excitation is independent of the others.

4.2 MoM Code Structure

A flowchart of the jet engine moment method code is given in Figure 9. This flow chart shows

the outer loop going through all cylindrical modes
the computation of the matrix element Z,
system solution via LU decomposition

inverse cylindrical FFT operation for generating each row of the scattering matrix

Read Input

)

in+1

FIGURE 9: MoM Code Main Iteration Loop.

* mode l
Matrix Z,,, Fill Output
Seeld) Post-processing
+ [Z] +
LU solver Stop
ZI=V
¥
Inverse FFT
- mode
Store outgoing
4
mode=mode+1

The matrix fill and Inverse FET routine pseudo-codes are shown in Figures 10 (a) and (b) respectively. In these

codes, N, denotes the number of engine slices/blades and const is

Ifor all slices ( s=0, N,-1) lfor all (angles il=1, exrho)
for all source triangles { p=1, num_source_triangles) for all (point i2=1, ngas)
for all observation mriangles (g=1, num_observation_triangles) for all (angles i3=1, exphi)
compute next entry of for all (points i4=1, ngas)
impedance matrix [A]” call integration routine
endfor endfor
endfor endfor
IZ]" = [Z]"™ +consifm, s)¥[A]* endfor
endfor endfor
(@) ()
FIGURE 10: (a) Matrix Fill Pseudo-code. (b) Inverse FFT pseudo-code.
. . . o) (1) Nyl
a complex function of the mode number (m) and slice number(s). Also, the matrices [A]J?, [A]", ... [A]"" are

the submatrices comprising the matrix [Z] and provide the interaction between the engine blades. Based on the
previous discussions, the parallelization of this algorithm can be performed at several levels. For example, since the
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mode iterations of the main loop are entirely independent, they can be done in parallel. However, in this case each
processor will be required to keep a full copy of the /Z, 7 matrix and thus the storage requirements become very large.
Also, load imbalance will become a significant bottleneck if number of modes is not evenly divisible by the total
number of processors. To avoid these issues, we instead proceeded to individually parallelize the matrix fill, LU
factorization and InverseFFT routines, thus taking advantage of the finer-grain paralellism of the code at this level.

4.3 Major Optimization Stages

Our optimization of MoM code consisted of four steps:

1. Porting of the matrix fill routine to static storage device (SSD?

2. Rewriting and parallelization of the matrix fill routine

3. Library call substitutions

4. Vectorization and parallelization of the inverse FFT routine

Sections 4.3.1 through 4.3.5 describe the optimization procedures with Section 4.3.2 giving a concise introduction
vectorization.

43.1 Porting Matrix Fill Routine to Static Storage Device (55D)

As shown in Figure 9, the main iteration loop calls the matrix_fill routine for every mode. In the original version of
the code, each impedance submatrix [Z]'" had to be recomputed for every slice (Figure 10(a)). This was done to
avoid in-core storage of each [Z, *) submatrix, even though the submatrices were identical from one slice to the other
(since the slice is a periodic cell). The CRAY-C90 however provides way to avoid both excessive storage
requirements and the need for a recomputation of the submatrices is to by making use of the SSD at the first call of
the matrix_fill routine. At each subsequent mode loop, the stored matrices are recalled from the SSD to accumulate
the sum in {Z]™ matrix. The resulting pseudo-code is shown in Figure 11. This change alone resulted in an 11x
program speedup as seen below in Table 1.

for all {slices s=0, N,-1)
if (m==1) then 1 if first mode
for all (source triangles p=1, num_source_triangles)
for all observation triangles q=1, num_observation_triangles
compute next entry of
impedance matrix {Z]
endfor
endfor
store [Z]* on SSD
else
read [Z]™ from SSD ! avoid computing [Z]®

endif
Lndizrm = [Z]"™) +const(m, s)*[Z] "

or

FIGURE 11: Pseudo-code to compute the impedance matrix using SSD storage.

4.3.2 Principles of Vectorization

Since a high level of vectorization is a must for efficient utilization of the CRAY-C90 processor, based on
vectorization, in this section we give a brief introduction to the principles of vectorization before introducing the

code speed-ups.

2 gSD-solid state storage is very high speed secondary memory of up to 2048 Mwords (16Gbytes). CRAY-C90
supports up to 4 1800-Mbytes/s channels for accessing.
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A vector is a set of scalar data items (elements), all of the same type. A vector instruction applies an arithmetic
or logical operation to vectors by using vector registers as operand registers. A vector load/store instruction moves a
vector between a vector register and memory with some constant memory strides. However if GCD(stride, number of
memory banks) # 1, then the load/store may take twice as long, four times or more. There is also some support for
irregular, nonconstant strides. However, a data layout in memory that allows stride=1 will always be fastest.

Vectorization converts scalar operations such as multiplications and additions to corresponding vector
operations. That is, a vectorized code processes the multiplications/additions as a sequence of vector statements and
this is particularly attractive for multiplying arrays in do-loops. A well-vectorized code can easily achieve a speed-
up of 10 to 20 times, as compared to the equivalent scalar code. Vectorizing compilers perform the mechanics of
vectorization; but they are much more effective if the code is written in a style that helps the compiler recognize
vectors. They also report what was successfully vectorized and provide some hints about problems that prevented
vectorizations. These hints are often useful for rewriting the code for more effective vectorization. Below we
consider a few examples which illustrate the implementation of vectorization steps.
Examples of vectorization:
Example 3: (Recurrence)
Consider now the loop shown in Figure 12(a), The statement instances are executed in the order shown in the
unrolled code. Note that the value of each A(i), 2£i<n, is dependent on the A(i-1) calculated by the immediately
previous statement (iteration). If we were to vectorize L, then the products A(I-1)*B(i} in the vector statement
A(1:n)=A(0:n-1)*B(1:n) would be computed using the values A(0:n-7} that existed when entering the loop. Since
incorrect results would be produced, a vectorizing compiler would indicate that this loop can not be vectorized due
to its (loop-carried) dependence.

serial loop vectorization not possible
L: doi=in L{1): A(1) = A(0}*B(1) -
8. Afi) = A(i-1}*B(i) Li2): A2) = A(1)*B(2)
end do
(a) L{1): A(n) = A(n-1)*B(n)
®)

FIGURE 12: Vectorization example 4.

Example 4: (Loop Interchange)}

However, consider the operation shown in Figure 13, referred to as the two-point difference scheme. One way to
rewrite the loop as a set of vector statements is to interchange the loop order and this is done in Figure 13(b). Now,
the inner loop may be converted to a vector statement, as shown in Figure 13(c}).

serial loop transformed loop
L: doi=ln L: doj=ln
do jzl._ n o . doi=/ n
S: Al j)=(A(L, j-1) + A, j+1))2 S: Af, j)=(A(, j-1) + A(L, j+1)¥2
end do ’ ’ ’
end do
end do
end do
@ ®)
Vectorized loop
L: doj=ln
A(lm, j)=(A(t-n, j-D+A(Ln, j+1))2
end do
FIGURE 13: VectoriZ}ion example 4. (a) original code (b) loop restructuring before vectorization
(c) vectorized code.

Example 5: (Loop Distribution)
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In the loop shown in Figure 14(a) the operation 51 depends on the result of S2 in the previous iteration. This
apparent interdependence, can be removed by distributing the loop as shown in Figure 14(b). The rewritten code,
although not as compact, is now amenable to vectorization as shown in Figure 14 { c).

(al transformed loop .
S1: Dfi)=A(i-1)*DSi) S1: Ai)=B(i)+C(i) n v .
oy A(;)=B(;)+)C wi end do D(1:n)=A{0:n-1)*D(1:n)
end do L22: doi=ln ©
(a) Si: D(i)=A(i-1)*Dfi)
end do
(®)

FIGURE 14: Vectorization example S. (a) original code (b) rewritten code (c) vectorized code

For code such as examples 4 and 5 if a vectorizing compiler is unable to vectorize the loop, performing the
transformation in (b) manually should allow the compiler to produce the vector code shownin (¢ ).

4.3.3 Vectorization and Parallelization of the Inverse Transform

Runs made with the original version of the MoM code revealed very short average vector lengths. Also, very little
improvement in this regard was observed when the compiler optimization flags were enabled. Such a poor utilization
of vector registers is explained by the fact that the original version of the MoM code was written for RISC
processors. Therefore no attempt was made to program the code in a manner suitable for vectorization (or
parallelization). After careful examination of the code, both manually and using various performance tools, we
discovered that the Inverse FFT (or IFFT) integration routine had the highest potential for vectorization. The original
code fragment took a single source triangle and passed it sequentially through several different subroutines to
perform a single surface integration over each vector function as shown in Figure 15.

subroutine get_vertices(vert,g) subroutine integrate(vert, vini)
real vert(3,3) real vert{3,3), vint(3)
integer g vint{1)=...
vert(1,1)=... vin{2)=...
vint(3)=...
vert(3,3)=... end integrate

end get_vertice:

real verz(3,3) ! list of vertices of the triangle
real vini{3,3)  !result of integration
for each source triangle q

call get_vertices(vert,q)

call integrate(vert, vint)

endfor

FIGURE 15: Inverse FFT Integration Routine.

This version of Inverse FFT also yielded a poor performance on the CRAY-C90. More specifically, the
average vector length was 6, with 128 being the theoretical maximum limited by the length of the processor’s vector
registers. Further, automatic vectorization failed to perform the interprocedural analysis required by this code.

Our first successful phase of optimization was to replace these single element calls with a call to subroutines
that accepted as inputs the entire list of integration elements rather than providing them one by one. This
transformation resulted in a rather efficient vectorizable code (See Figure 16). This code permits vectorization within
each low-level subroutine, thereby eliminating the need for interprocedural analysis.
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real vert{num_triangles, 3, 3) !list of vertices of the triangle
real vint{num_triangles, 3, 3} ! result of integration
call get_vertices(vert)
|call integrate({vert, vint}
bubroutine get_vertices(vert) subroutine integrate(vert, vinr)
real vertinum_triangles, 3, 3) real vert(num_triangles, 3, 3}
for each triangle g real vint(num_triangles, 3, 3)
vert(g, 1, I) for each triangle ¢
vint{g, 1)=...
vert(g, 3, 3)=... vinf{g, 2)=...
endfor vini(g, 3)}=...
get_vertices endfor
rﬂd end integrate

FIGURE 16: Vectorizable Inverse FFT Integration Routine.

Further optimization included standard techniques such as subroutine inlining (both manually and
automatically with the inline compiler option), loop splitting, scalar expansion, etc., all leading to an average vector
Iength increase by an additional factor of 10 or so.

The next step was to parallelize the IFFT routine. Since CRAY-C90 is a parallel shared-memory machine,
the loop distribution principles discussed in Example 2 apply here. We observe that the individual calls to the
integration routine (see Figure 10(b)) are entirely independent and, thus, the outermost loop can be readily
distributed yielding the parallel code in Figure 17. Finally, we note that maximum parallelization is achieved by
maintaining good load balance, and this is readily done provided that the outer loop trip count of divisibie by the
total number of processors.

do all angles il=1, exrho
for all point i2=1, ngas
for all angles i3=1, exphi
for all peints i4=I, ngas
call integration routine
endfor
endfor
endfor
end do all

"FIGURE 17: Parallel Inverse FFT Integration Routine

4.3.4 Parallelization of MatrixFill Routine

Having achieved sufficient performance on one processor, the next optimization step is to parallelize the
matrix_fill routine. As noted above the code uses a faceted surface model employing triangular elements for the
characterization of the jet engine blade geometry (or slice) resulting in the discrete system given by (1).

Lets us begin with the serial version of matrix_fill as given in Figure 18(a). The code loops over the surface
patches and computes the partial integrals for each of the integrals associated with currents flowing through each of
the three edges that make up the patch. These three evaluations provide contributions to the matrix entries and are
assembled later at their appropriate locations in the matrix [Z]. To parallelize the code we need to distribute the
outermost loop source triangles to different processors as shown in Figure 18(b)°. Since, the three edges for both the
source and observation triangles will not generally be assigned to the same processor, the GUARDING code block is
needed to guarantee that only one processor updates a [Z] matrix entry at any one time.

? Distribution of loop iterations to multiple processors is called Multitasking in general. On CRAY-C90 this
transformation can, in many cases, be antomatically performed by the compiler, and is thus referred to as
Autotasking.
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for all observation triangles p
for all source triangles g

call integration routine
for all edges m(l), m(2), m(3) of p. v
for all edges n(l), n(2), n(3) of g, w
Zim(v), n(w)) = Z(m(v), n(w)) +const(p, 4, v, w)

endfor
endfor
endfor
endfor

(@)

do across all observation triangles p
tor all source triangles ¢

call integration routine
for all edges m{1), m(2), m(3} of p, v
for all edges n(1), n(2), n{3)ofq, w

GUARD mutex region
Z(miv), n(w)} = Z(m(v), nfw)) +consi(p, g, v, w)
END GUARD
endfor
endfo
endfor
end do across )

FIGURE 18: Matrix Fill. (a) Serial version. (b)Parallel version.

The synchronization overhead to execute the guarding code is negligible compared with the time needed to go
through other statements in the loop. Since, in general, the number of source triangles is much larger than the number
of processors available, the above paraliel version of matrix_fill should be quite efficient.

4.3.5 Library Call Substitutions

Whete possible, the CRAY-C90 library routines were substituted into the original code. Most of these routines
are carefully hand-tuned for both vector and parallel execution and it is therefore a good practice, in general to make
use of the system library routines whenever possible. Of primary interest to us is the LU factorization routine which
ranks second in the list of the most time-consuming operations in the MoM code. The original code employed the
LINPACK routine ZGEEA and this was replaced by the equivalent CRAY-C90 CGETRF vector parallel routine.
The speedup resulting from substitution of the CGTERF is shown in Figure 19, where all times are wall-clock
times. It is clearly seen that substantial speedup was achieved. More specifically, the CRAY-C90 library LU routine
reduced the CPU time by 30% percent on a single processor, and from 35 sec down to 5 sec on the 16-processor.

Tima (s8¢}

1800
1508 4000

800 ' 4
Matrix dim 80 he

CZREFA
CESETRF node}
p CGETRF (2 nodes)

CGETAF (4 nodas}

CGETRF {8 nodes)
CGETRF {16 nodes)

FIGURE 19: Scaling of CRAY-C90 matrix Factorization Routine

4.4 Performance of Individual Optimization Stages
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The overall improvements after each optimization stage of the code, as described above, are summarized in the
Table 1. The underlying geometry was 2 21 engine blade geometry, 3 wavelengths in diameter.

VECTORIZATION::
12.5 12.5 12.5
18 18 4
6.5 4 4
g 2.25 2.25
1.7 1.7 1.4
25 25 0.4
21 19 18.3
30 23 6.68
11.3 __13 3.4
/50 TIMES TOTAL SPEEDUP

TABLE 1: MoM Speedup after each of the Four Code Optimization Stages

The first three columns of the Table 1 present the run-time improvements of the serial code, whereas the fourth
column indicate speed-up of the paralellized code which was run on the number of available processors. The first
column shows the code run time in the absence of any hand-tuning with only compiler limited vectorization, inlining,
etc. This time is comparable to the run time of the original code on a high performance workstation with compiler
optimizations.

4 Conclusion/Further Optimizations

In this paper we described various optimization techniques that can be routinely used to improve the
performance of standard moment method codes for electromagnetic applications as well as more specialized codes.
We detailed several vectorization techniques which proved effective in tuning the performance of the MoM code on
a CRAY-C90. We showed parallel loop distribution for matrix_fill and parallelization of the LU factorization.
Although, matrix_fill scales as n® whereas LU factorization scales as n’, the matrix_fill routine remains the most
dominant part of the code for large values of n due to the large constant in front of »°. In fact the crossover between
O(n*) and O(n>) has not been reached {13).

Although, we successfully employed SSD storage to avoid redundant matrix_fill for every mode iteration, this
approach is not likely to succeed outside the CRAY-C90 environment. We are currently working on porting the
matrix_fill section of the code to a distributed memory architecture. In this case, each processor will be responsible
for computing and storing only its assigned portion of the matrix entries. We hope that by carefully decomposing the
mesh and mapping the triangular elements to different processors, we will be able to reduce the overall
communication needs and thus achieve a scalable distributed memory code.
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