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Abstract—We present for the first time a successful
formulation of a three-dimensional finite-difference time-
domain algorithm that is based on the recursive
convolution approach and is used to evaluate the
propagation of electromagnetic waves in nonlinear
dispersive media. We treat in particular the case where the
nonlinear polarization term depends only on the product of
the square of the electric field and the third-order electric
susceptibility function. However, the approach is general
and we can easily extend the formulation to the product of
any power of the electric field with the nth-order electric
field susceptibility function. We find that, in contrast to the
usual formulation for linear dispersive materials which
uses a simple linear relationship between the next-time-step
electric field and the previous-time-step electric field, the
formulation for nonlinear dispersive materials with a third-
order susceptibility function results in coupled nonlinear
cubic equations which relate the next-time-step electric
field vector to the previous-time-step electric field vector.
Consequently, the coupled nonlinear cubic equations must
be solved at each time step to advance the electric field
vector.

I. INTRODUCTION

There has been considerable interest in understanding the
transient behavior of an ultrafast laser pulse that interacts
with a nonlinear dispersive material. In the last several years
many experimentalists have made use of newiy developed
Kerr lens mode-locked titanium-sapphire lasers to perform
well-controlled experiments to obtain accurate measurements
of the transient behavior of ultrafast laser pulses in simple
molecular liquids and solids which are known to exhibit
nonlinear optical behavior [1]. To better understand the
details of nonlinear processes that are observed in the
experiments, numerical simulations have been used
extensively to reproduce observed nonlinear effects. Until
recently most computer simulation has been performed by
solving an approximation to Maxwell’s equations, known as
the generalized nonlinear Schrodinger (GNLS) equation [2],
to get information about the time evolution of the envelope
of the propagating oscillating wave packet in order to obtain
the overall shape of the propagating optical pulse. Because a
GNLS equation-based computer simulation does not provide

any information about the details of the oscillating waves
inside the envelope of the optical pulse, there is a renewed
interest in solving Maxwell’s equations directly without
having to rely on any approximations.

Happily, with the advent of present day computers which
provide very fast execution times and great quantities of
computer memory, we are at the point where enough
computational power 1is available to solve Maxwell’s
equations directly for nonlinear dispersive materials. Among
recently investigated numerical techniques that show great
promise in achieving this goal is the well-known finite-
difference time-domain (FDTD) method [3]. It is based on
using a simple differencing scheme in both time and space to
calculate the transient behavior of electromagnetic field
quantities. Because of the usefulness of the FDTD method
for many optical applications, recent researchers have
focused their attention to the numerical evaluation of the
linear and nonlinear polarization terms which appear in one
of Maxwell’s equations (Ampere's Law) as convolution
integrals. An efficient evaluation of these terms allows us to
model linear and nonlinear dispersive effects more
effectively [4-9].

The designation of terms as linear and nonlinear depends
upon the form of the integrand appearing in the convolution
integral that relates the displacement field vector, D(t;x), to
the electric field vector, E(z;x). For linear dispersive,
isotropic materials, the relationship between D(t,;x) and E(z,x)
is usually expressed as

Dit;x) =e,e. E(t;x)

pm!l( Aot
+e, Y, jE_(z’;g)XfD”(t—z‘)dr
p=l _e

(1.1)

where €, is the electric permittivity of free space, €., is the
medium permittivity at infinite frequency, and X,,(“(t-z') is
the pth term of the collection consisting of p,, time
dependent, first-order electric susceptibility functions, where
Pmax 1S the maximum number of terms which we choose to
consider for a particular formulation of Eq.(1.1). For
isotropic materials that exhibit both linear and nonlinear
polarization properties, specifically through the firsi-order
(linear) and third-order (nonlinear) electric susceptibility
functions, X,,(“(t—r) and Xp(j’(t,z;t,,tz), respectively, the
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relationship between D(t;x) and E(t;x) can be expressed as
[10]

D(t;x)=¢ e, E(t;x)

+€(1 Z JE(T,'E)XL])(t—f)dT
p

*te, ZT T T@(rz;z)[gtm-gr:z)]
p

—00 —0o0 —oo

XGN 11,01, ) diy diy dt (1.2)

where Xp(”(t,z;t,,tz) is the pth term of the four-time
dependent  third-order  susceptibility function  which
contributes to the nonlinear behavior of the material and e is
the notation used for the dot product of vectors. When
Xp(j)(t,ttbtz) is reduced to the single-time dependent
susceptibility function, ;(p(3)(t1-t2), by making use of the
following Born-Oppenheimer approximation [10]

Xt e, 0.0,)=8(t—1,)8(1—1,)

A=)+ 8(1,~1) o)) ] (1.3)

where aéf,) is a constant and &t) is the Dirac delta function,

we can show that Eq. (1.2) reduces to an expression that
consists of sums of convolution integrals of linear and
nonlinear terms; namely,

D(t;x)=€,€. E(;x)

+ €, z J-_E_(T;E)X/(,”(I—T)d’[

P e
ve, Bux)y, [[E(rixye Erix)] 2 (1= )de
P e

+e, B E(nx)e E(:x)]Y ol (1.4)
P

Based on the above expression, this paper provides a
general formulation of the FDTD method, which we call the
NonLinear Piecewise Linear Recursive Convolution
(NLPLRC) approach, to evaluate the linear and nonlinear
convolution integrals. We investigate in particular the case in
which both the first-order and third-order electric
susceptibility functions are expressed as complex functions
that contain complex constant coefficients and exhibit
exponential behavior in the time domain as follows:

XY(1)=Re{ asexp(—y5t)fU(1) (1.5)
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25(1)=Re{ aftesp(—y, 1)} U(1) (1.6)

where Re{ ]} is used to represent the real part of a complex
function, U(1) is the unit step function, and a,", a,"*, 3" and
7" are complex constant coefficients; superscripts L and NL
are used to distinguish between linear and nonlinear
coefficients. By making the proper choices of complex
constant coefficients and performing Fourier transforms, we
can readily obtain the familiar Debye and Lorentz forms of

the complex permittivity in the frequency domain.

1. GOVERNING EQUATIONS AND GENERAL
FORMULATION OF THE RECURSIVE
CONVOLUTION APPRCACH

In light of Eq.(1.4), Maxwell’s equations inside the
dispersive material can be written as

A uH(1x)]
VxE(t;x) = —————— @.1
gt
Vxax) = 28 g 22)
with
D(t;ix)=e,e, E(t;x)+e, D Pr(t:x)
p
+e, B(;x)Y PYH(1:x)
P
ve, B(;x)] E(tx)o E(t:x)] ) abY) 23)
P
Ph(tx)= [E(zix) x(1—7)de (2.4)

—oo

P = [[Erix)e Brix)] 40 (1-)dz - 25)

where H(t;x) is the magnetic field vector, u is the magnetic
permeability, and BPL( t;x) and [E( t;g)PpNL( t;x)] are related to
the pth terms of linear and nonlinear polarization field
vectors, respectively. Using an FDTD algorithm, the above
equations can be solved numerically at each time step
provided we can handle Bpl‘(t;g) and PpNL(z;;c) numerically.
Therefore, the whole solution rests on the question of how to
carry out the numerical evaluation of BPL( t;x) and PPNL( t;x) at
each successive time step. For that reason, the rest of this
section is devoted to the numerical formulation that treats
I_’,,L(t,';c) and PpNL(t;;c) based on the recursive convolution
approach.
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To obtain second-order accuracy in time in evaluating the
convolution integrals, E(t;x) is taken to be a piecewise linear
continuous function over the entire temporal integration
range so that E(t;x) changes linearly with respect to time over
a given discrete time interval [mAr, (m+1)At], where
m=0,1,....n, with ndt being the current time step [11,12].
Referring to Figure 1, we can express E(f;x) in the following
form in terms of the electric field values, E;;™ and E,-jk'"”,
which are, respectively, evaluated at discrete time steps
t=mAt and t=(m+1)At and at the same discrete spatial
location x = (idx,jAy,kA4z) with Ax, Ay and Az being the
spatial grid sizes in the x, y and z directions, respectively (we
use a superscript to designate the discrete time step and a
subscript for the discrete spatial location):

m+1 m
m  (Ey —Ep)
=ijk

(t—mAt ), for

E(t;x)=9 0<mAt<t<(m+1)M<(n+1)At; (2.6)

0, for <0

When Eq. (2.6) is substituted into Eq. (2.4), we obtain after
some manipulation the following expression for discrete
values of BPL(t;g) at discrete time step nAr and discrete
spatial location (idx,jAy,kAz) [see Appendix for details]:
c n L
Py(ndt;idx, jAy kAz)=(PL )5 =Re{(Q5)n ] @)

where the discrete complex values, ( Qp'“ )", are defined as

n—1
(Qf, ik = 2 {Eglk(V;La,o y
m=0

+HER —Eq s, ] 2.8)
with
(n—m)At
(W)= ab _[ exp(~y,7)dz (2.9)
(n-m-1)4r
aL (n—m}jar
(vp, "= 22 fitn-mja—z]
(n-m-1)At
-exp(—y;t)dr (2.10)

Similarly, substituting Eq. (2.6) into Eq. (2.5), we obtain
after some manipulation the following expression for discrete
values of PpNL(t;)_c) at discrete time step nAr and discrete

spatial location (iAx,jdykAz) [again, see Appendix for
details]:

PR nt;idx, jy, kA )

=(Pp ) = Re{(Q) )i } @11)

where the discrete complex values, ( Q,,NL )", are defined as

n—1
NL _ m NL \n,m
(Q, i = 2 {E[jk '_?k(Wp,o)
=0

+ 25271(' ( En— E:lk N V/NL )

ijk p.l
HER ~Ej 8B -Eq w5 } @12
with
( n—m )Ar
(Vo= at [ew(—yte)de @13
(n-m-1)At
aNL (n—m )4t
Wair e S Jitmma
(n-m-1)At
NL
aNL (n—m )t
(V/f,”é)"'m = 2 J[(rz—m)At—le
‘ ’ (At)
(n-m-1)At
exp(—Mz ) de 2.15)

After some manipulation we can show that the ¥’s defined in
Egs. (2.9), (2.10), (2.13), (2.14) and (2.15) satisfy the
following recursive relationships relating the next time step,
(n+1)At, to the current time step, nAr:

n+lm

(Yo" =exp(=y g At )yl ;)" (2.16)
(yo, )" =exp(~y s Aty )" 2.17)
(wao)" " =exp(=y A )(y'hs )" (2.18)
(W) = exp( =yt an(whh (2.19)
(Y5 ) =exp(—y Ay )" (2.20)

It is important to mention that we are able to obtain the above
recursive relationships only because both the linear and
nonlinear susceptibility functions are expressed in the
exponential forms shown in Egs. (1.5) and (1.6).
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When Egs. (2.16) through (2.20) are used in Egs. (2.8) and
(2.12), respectively, for the next discrete time step, we get
the following expressions for (P,");;"*" and (P,*");;"* based
on the recursive relationships obtained for ( Qf),;,f” and
(Q," )™ in terms of Ey"™', Ey", (Qp" )" and (Q5" )" via
Egs. (2.16)-(2.20):

(PL" = Ref( QL)

L 5 n L \n+ln
=Re { exp(— }/f,At)(gp Jie * Ee (W 50) !
+(§Z;I _E_:‘ljk )(W,L)) )n+l.n /I

L n n K
=Ref exp(— 7f,At)(Qp),;;k +Ezjk(l//f),0)10

+(Ej - En ws )"} 2.21)

(PYE = Ref( QN !
=Ref exp(— YN At )( QN i + Ely o Ef(wing )"

+2E o(En —EL ) (whh

+(E —Er ) (ElL —Ep Ny hs )" ]
=Ref exp(— YN 4 ) (QN ) +Ejy o Egi(wiho)"?

n n+/ n NL 10
+ 2Ee(Ey —EQ (v ,;)

+HE Bl e (B —Eq (wihs)" ) (2.22)

( l//;[;.f) )1,0 , (‘//:1 )I,U ,
(w5 )" (w)h )" and (y 7t )’ can be evaluated
explicitly from Egs. (2.9), (2.10), (2.13), (2.14) and (2.15) in
terms of known complex linear and nonlinear susceptibility
coefficients ", a,"", %", %"~ and 4t as follows:

In the above expressions,

At
(vho)"=ab [exp(—yht)dr
0

L
o L
-—-——f[]—exp(—ypAt)]

(2.23)
75
aL A4t
(v )= [tz )exp(~bz ) ar
0
L
“2of 11— ep( )i} (224)
s ;/pAt
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4t

(W) = o [exp(—ite ) dr
0
aNL
=~ 1—exp( =y, at)] (2.25)
Yp
NL Ar
o
(v =22 [t =2 jexpl—e) de
0
= “‘N’L{ - — [ 1= exp(—¥ at )]} (2.26)
72’L YZLAf P )
NL \1.0 O!QIL T 2 NL
(yhh ) s(—m?j(m—r) exp(—y¥ ) dt
0
NL
ap 2 1 NL
= - I1— 1—ex At )]]}2.27)

To demonstrate how the above terms are used in the
FDTD calculation, we consider a full three-dimensional case
in Cartesian coordinates. We use the usual Yee algorithm [3]
for Egs. (2.1) and (2.2). The space discretization is done
according to the wusual staggered-grid with central
differencing scheme so that we will not discuss it further
here. The time discretization for Egs. (2.1) and (2.2) become

pH" —pH " =-A[V XE}, ] (2.28)
Dy -Dy =M VXHE" |- A GE}, (2.29)

Based on expressions obtained in Eqgs. (2.3), (2.21) and
(2.22), the left-hand side of Eq. (2.29) can be expressed in
terms of E;;"*' and Ej;" as

n+1 n
Q[jk - Q,’jk

+e, ZRe{[exp(—yf,Az)—1][(g§),_.';k]
p

_ n+l n
= €0 (B — Ly )

+ EL(Who )+ (E —El Ay, )" )

+e, > Rell Eflexp(—ytae) - EG, ) QN )i
P

+ES(El o EL )N whg )"
+2 Ep [Ege o (Egy’ = Ep )I(wps )"’
+E IEy - Ey e (Ef' —ER )I(wp5 )"
+e, [E' (B e By ) - Ep [(Ejy » Ey Iy o)
I

(2.30)
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When Eq. (2.30) is substituted into Eq. (2.29), we obtain the
following coupled cubic equations which we need to solve
for E,;,-k"” in terms of the known fields quantities, (Qp'“),jk”,
(QpNL )i, Ey" and H,-jk”*'/z, which are calculated at previous
time steps t=nAr and t=(n+%)At:

n+l n+1
4yt a; Etk +[a2.El/k ]Et/k

+ay [En+i

£ (2.31)

n+l n+l
l/k ]Et/k =0

where gy, a;, a;, and a; are given by

g0=—At[VxH’.‘.+,I/2]+AtaE7‘.

El zRe{[exp( }’,g‘dl) 1)@ ),,L}

- €, E’ + €,
+E E;sze{(l//pO)1’0‘(1//,0,])1'0}

- & Ez/sze{(QNL ijk €0 -—ljk [E .Eyk ]2 (Z(3)

(2.32)
a; = €,€,TE, ZRe{(Wé,I)]’O}
+e€, zRe{exp( yNLAt)(QNL)Uk}
+e, [Ej s El 1D Refl(yis )"0 2005 1" (w5 )0 )
P
(2.33)
=2¢, Eijkz Re{(wy5 )0 —(w)5 )0} (2.34)
a; =€ ZRe{(wpa)“)}JrZ of) (2.35)

Eq. (2.31) can be solved for Eijk by using any standard
root-finding numerical technique. One possible technique is
the iterative nonlinear Newton-Raphson method with E;;" as
the initial guess for the start of the iterative procedure [13].

Upon completing the calculation of Etjikn+], we proceed to
update (Q, ),,k"” and (Qp ),,k"” by making use of
Egs. (2.21) and (2.22).

With above formulation, we only need to consider
updating Eqgs. (2.21), (2.22), (2.28) and (2.31), respectively,
for (Q, ),,,"”1 (Q, )™, Hy"™ %, and E;"*' at each time step
for carrying out a complete computer simulation of the
electric field response in nonlinear dispersive materials. The
flow chart of numerical steps, that are required to update
electromagnetic  field quantities, for the recursive
convolution approach is shown in Figure 2.

For the purely linear dispersive case, g; and az, as well as
some terms appearing in gy and g, , turn out to be zero. In

this case we can solve for E;"*' directly without having to

rely on the numerical root finding technique as discussed
more in detail in the published literature [14-19].

II. EQUIVALENCE OF THE RECURSIVE
CONVOLUTION APPROACH
TO THE AUXILIARY DIFFERENTIAL
EQUATION APPROACH

An alternative technique for solving the nonlinear
dispersive problem is the so-called auxiliary differential
equation approach [4-7]. The auxiliary differential equation
approach is in fact equivalent to the recursive convolution
approach as we now show.

To begin, we first substitute Eq. (1.5) into Eq. (2.4) and
Eq. (1.6) into Eq. (2.5) and then differentiate these integrals
with respect to time to obtain the following first-order
differential equations for complex functions QpL(z;g) and

0, (t:x):

90" (1;x)
B 4y, 0 (1 x)=ab Bt x) (3.1)
a NL .
—-——Q”azti) + 7N 0N (1:x)
—ap [E(t x)o E(t;x)] (3.2)

From the above equations the linear and nonlinear
polarization vectors, P, L(1; 'x) and [E(t x)Pp Y, x)] can be
obtained simply by takmg the real parts of Qp (t,x) and
[E(;x)Q,"(t;x)], respectively. Now, solving these two
equations exactly by using integraiing factors exp( %,L t) and
exp( }g,NLt), respectively, and then integrating between nAr
and nAt+At, we have

_Q_;(nAt+At;£)=exp(— yéAt)_Q_i(nAt;g)
nar+A4r
J.E(T;ic)exp[—yf,(n.dt—r)]df (3.3)

nat

+alﬁexp(—7l;At)

QgL(nAHAz;y=exp(—;/pLAz)Q (ndt; x)
nAr+Ar

JrEcex)e Bz

nar

~exp[—yZL(nAt—r)]dr

+aNtexp(— prAt)
3.4)

If E(7:x) is assumed to vary linearly in time between nAt and
nAt+At, as in the piecewise linear approximation of
Eq. (2.6), we can substitute Eq. (2.6) into the right hand side’
(1.e. the inhomogeneous part) of Egs.(3.3) and (3.4),

respectively, to obtain the following expressions for ( Q,,L )y
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and (Q,"")"*" at discrete time step (ndt+A4r) and discrete
spatial location (iAx,jAy,kAz):

. . L n
Q' (ndt+ Aty iy, jAy, ke )=( Q) )i’

=exp(— 75 40)( Q) )i + Ep(W0)"°

+(Ej —Ey My),)" (3.5)
QN (nde+ At;idx, jAy, kAz )=( QN )i’

—E)Cp( yp AZ)(QNL)l]k+[(E,,k —uk )](l//pa)jo

+2[Ejee(Ef = Ep )] (w5 )"

FI(E —Ef )e(EfR —Ej )l (yps)™ (3.6)

In the auxiliary differential equation approach, we first use
Eq. (2.29) to calculate the updated dlsplacement field vector,
D;i™’. Then the electric field vector, E;;**’, is updated from
the following constitutive relationship, whlch is obtained
from Eq. (2.3) by evaluating it at t=(n+1)At:

o= mve, B R

ijk

+e, E;[’Zke{(g’“)q”}

&, E?,Z’[E:Z’ ,’;Z’JZas“ 3.7
When Egs. (3.5) and (3.6) are substituted into the above
equation, we obtain the following coupled cubic equations
which we need to solve for _E_‘,-jk"” in terms of the known field

n+s,

. n NL
quantities, D™, (0, )i+ (@, )i » Ei and Hy

bo+b, Ef' +[b,sEl T EG!
+by [Ef o ERTEL =0 (3.8)
where by, b;, by, and b; are given by
L
by=-Dj'+e, Y Refexp(-y;40(Q i |
ve, En > Rel(who )" ~(vp, ) ) (3.9)
P
b, = €€, +€, zRe{(l//;, )]'O}
+€, ZRe{exp( ;/NLAt)(QNL ik }
+e, [Ej -EukJZRe{(wpo)’o 200" (w5 )0 }
(3.10)
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b,=2¢, E,,kERe{(wp,) ~(yp5)° ] (3.11)

But we know that D", which are found in the right hand
side of Eq.(3.9), can be expressed as follows from
Eq. (2.29):

(3.12)

Dn+1 — D

n+¥2
Dy =Dj +A[ VXHZ" |- A&t 0Ey,

(3.13)

Also, we can show from Eq. (2.3) that D;;", which appear in
the right hand side of the above equation, have the following
forms when evaluated at t=nAt:

D}y =c,c. Elite, zke{(g’;);;k}
p
+€n E;szell(QgL)gk}
P

+e, Egl Ejy sEg 1Y o) (3.14)
p
Now, substituting Eqs. (3.13) and (3.14) into Eq. (3.9), we
can show that by is the same as g, [see Eqgs. (3.9) and (2.32)];
likewise, we can see that b;=a, [see Egs. (3.10) and (2.33)],
by=a; [see Egs. (3.11) and (2.34)], and b;=a;[see Eqs. (3.12)
and (2.35)]. Hence, we can conclude that the auxiliary
differential equation approach is equivalent to the recursive
convolution approach. The only difference is that the
auxiliary differential equation approach requires additional
memory to be allocated for the calculation of the
displacement field vector, D(t;x), which is updated via
Eq. (2.29) [or Eg. (3.13)] at each time step. Thus, in the
auxiliary differential equation approach, we use Egs. (2.28),
(2.29), (3.5), (3.6) and (3.8) to update, respectively, for
llkn+'/z Dukn+1 (Qp )Ukn+1 (Qp )llkn+1 and Eijan at each time
step in order to perform a complete simulation of the electric
field response in nonlinear dispersive materials. Also shown
in Figure 2 is the flow chart of numerical steps, required to
update electromagnetic field quantities, for the auxiliary
differential equation approach.

IV. NUMERICAL DEMONSTRATION: ONE- AND
THREE-DIMENSIONAL CASE STUDIES FOR
NONLINEAR SOLITARY WAVE FORMATION

A. One-dimensional Case

To demonstrate the validity of the NLPLRC algorithm, we
first consider the formation of a temporal soliton in one-
dimensional space inside a nonlinear dispersive medium. We
simulate an optical pulse propagating into an infinite half-
space nonlinear dispersive medium. First, we launch an
optical pulse in free-space and propagate it from left to right
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in the positive x-direction. After traveling a short distance,
the optical pulse is incident on an infinite haif-space
nonlinear dispersive medium that is characterized by the
first-order (linear) susceptibility function, Xp(“(t), and the
third-order (nonlinear) susceptibility function, ;{p(j)(t). We
consider the case where X,/"(1) and y,”(t) are expressed in
the following Lorentz forms [4.5] for a single species [i.e. set
Ponax = l]

2

a)_ _
X;I:)](z)z._o(iei‘;)exp(_gt)
wg—é
~sin(w)a)5—52 t) 4.1
0= 2, 45 2
rexp(—t/1, )Sin(t/‘[] ) 4.2)

where ap is the resonant frequency, €, is relative permittivity
at DC, & is the first-order susceptibility damping constant,
Zo:'rj) is the Raman scattering nonlinear strength, 1/7; is the
optical phonon frequency, and 7; is the optical phonon
lifetime.

Comparing Egs. (4.1) and (4.2) with Egs. (1.5) and (1.6),
respectively, we can relate the above coefficients to the
complex coefficients, which are introduced in Egs. (1.5) and
(1.6), as follows:

ot et S5 = (4.3)

Voot S(0+i|w° —5° ) (4.4)
apl =ig, ] +73 )/r] 7] (4.5)
ri e (Lvid) (4.6)

2 1
where { 1s the imaginary unit.

We consider the incident optical pulse to have a
sinusoidal-carrier electric field frequency, @., of 8.61x10"
radians/sec which is enveloped inside a hyperbolic secant
(sech) function that has a width constant, T, , of 3.50
femtoseconds. The following mathematical form describes
the time-dependent incident optical pulse that we use in our
one-dimensional FDTD simulation:

Incident Optical Pulse(t)=A cos [ a)c( t—t )]

delay

( l-tdeluv )
-sech| ———— 4.7)

w

where A is the amplitude of the electric field and 1, is the
delay time for the incident optical pulse to reach its peak
value. We arbitrarily assign A to take the value of 1.0
volt/meter and i, to take the value of 41.70 femtoseconds.

We select the total number of simulation cells o be
200,000, ranging from x = -10,000 to x = 190,000, with the
free-space/dispersive-material interface located at x = 0. We
launch an optical pulse into free space at the leftmost edge
(at x =-10,000) and the optical pulse travels in the positive
x-direction. We use the LIAO absorbing boundary condition
[20] at both ends of the computational space. We placed
enough buffer cells between the main part of the simulation
volume and the outer boundary to minimize the effects of the
outer absorbing boundary inside the main nonlinear
interaction region.

Following are the basic FDTD parameters that we use in
our one-dimensional simulation:

Uniform cell size (Ax) = 5 nanometers,
Total simulation distance = 0.1 centimeter

(i.e. Ax times the total number of cells),
Time step increment (A = Ax/2¢)

= 0.00834 femtosecond,

Total number of time steps = 400,000

(or total simulation time = 3336 femtoseconds),
where ¢ is the speed of light.

For Ax of 5 nanometers, we estimate the free space
numerical phase velocity error to be around 5x10°° [21],
which is about the same order of accuracy as the single
precision calculation of our SPARC UNIX workstations.

To compare our FDTD results with the results published
by Goorjian and Taflove in their papers [4,5], we use values
similar to theirs to describe the property of linear and
nonlinear dispersive materials. Shown below are the values
of linear and nonlinear dispersive material properties that we
use in our one-dimensional FDTD simulation.

Linear dispersive material properties:

€,=5.25,

€.=2.25,

@, = 8.0x10" radians/sec, and
8=4.0x10° (sec).

Nonlinear dispersive material properties:

7; = 12.2 femtoseconds and
7, = 32.0 femtoseconds.

To see the difference in linear and nonlinear responses, we
first calculate the strictly linear dispersive case by setting
both the Raman scattering nonlinear strength, y,,”, and the
Kerr-type instantaneous nonlinear coefficient, ao/j), to zero.
For the nonlinear calculations, we investigate two extreme
cases: the purely Kerr-type instantaneous nonlinear
dispersive case with ;{01(3 ’=0and ;=02 (volts/meter)~,
and the purely Raman scattering (delayed) nonlinear
dispersive case with ;{01(3 ’=20 (volts/meter)'2 and a’mm =0.

To update the electric field value for the next time step, we
use the simple Newton-Raphson iterative method by making
use of the current-time-step electric field value as the initial
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guess to solve the cubic equation [see Eq. (2.31)}. For all
calculations we perform, the convergence criterion of 10 is
satisfied with at most three iterations.

Shown in Figure 3, Figure 4 and Figure 5 are the spatial
electric field patterns that we obtain for the strictly linear
dispersive, the purely Kerr-type instantaneous nonlinear
dispersive, and the purely Raman scattering nonlinear
dispersive cases, respectively, at time steps of 20,000,
40,000, 200,000 and 350,000.

Figure 3 shows the usual optical pulse broadening due to
the linear dispersive effect as the optical pulse propagates
into the dispersive medium.

In Figure 4, we can see the beginning of the formation of a
solitary wave packet for the purely Kerr-type instantaneous
nonlinear dispersive case soon after the wave propagates into
the nonlinear dispersive medium. First, it appears as the
small spike-like shape inside the linearly dispersive part of
the pulse as a result of the nonlinear self-focusing effect. As
the pulse propagates deeper into the dispersive medium, the
spike-like shape transforms gradually to the shape that
resembles more of the solitary wave packet and becomes
isolated from the main part of the linear dispersive pulse due
to the slower speed of the moving solitary wave packet. Once
the solitary wave packet becomes completely isolated from
the linear dispersive part of the pulse, the solitary wave
packet propagates at constant amplitude while maintaining
the shape of the hyperbolic secant function for the wave
packet (i.e. a solution of the nonlinear Schridinger equation
that describes the shape of the propagating solitary wave
packet). Another feature seen in Figure 4 is the formation of
a small secondary high frequency precursory wave packet
thar moves ahead of the linear dispersive part of the pulse
and the nonlinear solitary wave packet. Others have also
previously reported the appearance of the same secondary
high frequency precursory pulse packet [4,22]. When we
perform a frequency analysis of both the solitary wave
packet and the secondary high frequency precursory wave
packet, we find that the main peak of the secondary high
frequency precursory wave packet lies exactly at three times
that of the solitary wave packet [see Figure 6]. This is
consistent with analysis done by Hile [22].

For the purely Raman scattering nonlinear dispersive case,
we can see in Figure 5 the formation of a solitary wave
packet that is similar to the one we obtain for the purely
Kerr-type instantaneous nonlinear dispersive case; however,
the solitary wave packet appears retarded in time behind the
linear dispersive pulse due to the delayed nonlinear response.
We also observe the appearance of the secondary high
frequency wave packet, but at least four orders of magnitude
smaller than that of the purely Kerr-type instantaneous
nonlinear dispersive case.

When we compare the results of our FDTD approach with
that of the auxiliary differential (ADE) approach reported by
Goorjian and Taflove [4], we find that there is a significant
difference in the purely Raman scattering nonlinear
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dispersive case. To get the results from Goorjian and
Taflove’s ADE approach, we coded their ADE algorithm as
found in their paper and performed the FDTD calculation
using exactly the same FDTD parameters as we have used in
our FDTD calculation. The result is that for no value of ;[0,(3)
could we produce the delayed solitary wave packet that
resembles the shape we obtain in our FDTD calculation.
However, when we compare the results for the strictly linear
dispersive and purely Kerr-type instantaneous nonlinear
dispersive cases, we obtain very good agreement. Figures 7,
Figure 8 and Figure 9, respectively, show the comparisons of
spatial electric field profiles between Goorjian and Taflove’s
ADE approach and our FDTD approach at a time step of
350,000 for the three cases which we have studied: 1. the
strictly linear dispersive case; 2. the purely Kerr-type
instantaneous nonlinear dispersive case; and 3. the purely
Raman scattering nonlinear dispersive case. We believe that
the different spatial electric field profiles obtained for the
purely Raman scattering nonlinear dispersive case (see
Figure 9) between our NLPLRC approach and Goorjian and
Taflove’s ADE approach is the result of an approximation
used by Goorjian and Taflove in their ADE algorithm to
update linear and nonlinear polarization values. In their ADE
algorithm, they simply used the square of the current-time-
step electric field value in place of the square of the time-
dependent electric field function that appears in their linear
and nonlinear polarization differential equations [Egs. (15)
and (16) in Ref. 4] to calculate the next-time-step linear and
nonlinear polarization field values. Rather, we believe that
they should have evaluated the time-dependent electric field
as a function of both the current-time-step and the next-time-
step electric field values to correctly update linear and
nonlinear polarization values. By choosing only the
current-time-step electric field value, they basically reduced
their ADE algorithm to first-order accuracy for solving a set
of nonlinear differential equations. If they had chosen to use
both the current and next-time-step electric field values, they
were faced with solving a complicated set of coupled
nonlinear algebraic equations [Egs. (15), (16) and (17) in
Ref. 4] to update the next-time-step linear polarization field
value, the next-time-step nonlinear polarization field value,
and the next-time-step electric field value, in which they
have avoided in favor of computational simplicity.

To assure ourselves of the computational correctness of
the results that we obtained from NLPLRC algorithm, we
repeated the same FDTD calculations using one-half the cell
size and one-half the time step increment. These higher
spatial and temporal resolution calculations resulted in a
relative difference of less than 107 for the electric field value
at the end of the simulation run. Since this relative difference
is on the order of the single precision calculation error, we
concluded that we are indeed calculating the correct electric
field value. This procedure also served to validate the use of
the piecewise linear approximation.
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To make a physical interpretation of the result we obtained
for our Raman scattering nonlinear dispersive case, we
realize that the decay term [i.e. 7""] of the third-order
(nonlinear) susceptibility function contributes to a certain
amount of the delay before the nonlinear effects actually start
to play a role. The delay should be on the order of the inverse
decay term. Until that time the Raman scattering nonlinear
dispersive case should behave much like the strictly linear
dispersive case. Shown in Figure 10 are the snap shots of
spatial electric field profiles of the three cases taken at the
same time step of 350,000 for a direct comparison. From
these plots we see that the result of the Raman scattering
nonlinear dispersive case reveals exactly of these
characteristics which are associated with the delayed time
response. At the front of the propagating pulse, the linear
dispersive effect contributes significantly. Only after the
pulse propagates a certain distance (which corresponds to the
time delay of 1/%") the nonlinear feedback becomes
significant enough to create the soliton-like structure in the
tail end of the propagating pulse.

As far as computational performance is concerned, less
than 0.2 microsecond of the CPU time is required to update
all four electromagnetic field values per time step per cell
using an ULTRA 60 SPARC UNIX workstation to perform
1-D NLPLRC based on a convergence criterion of 10™*. This
is about eight times that of the CPU time needed to update
electric and magnetic field values in free space. When
compared to Goorjian and Taflove’s ADE approach, our
NLPLRC approach takes about 20% less amount of time to
update field values.

B. Three-dimensional Case

To demonstrate our NLPLRC algorithm in three-
dimension, we investigate the dispersive effect of a
propagating optical TE;, mode inside a square waveguide.
First, we excite an optical TE;y mode at the center of the
leftmost x-y plane of a free-space square waveguide using an
electric dipole source that is driven by a Gaussian pulse. The
excited optical TEj, mode propagates in the positive
z-direction inside the free-space square waveguide and is
incident on the x-y plane of the free-space/dispersive-
medium interface. Then the transmitted wave propagates
deeper into the right half-infinite volume of the dispersive
medium. The free-space /dispersive-medium interface is
focated at z =0, with z <0 for free-space and z > 0 for the
dispersive medium.

To perform three-dimensional FDTD calculations, we
consider the same Lorentz forms for the first-order (linear)
susceptibility  function, Xp(“(t), and the third-order
(nonlinear) susceptibility function, )(p”(t), and assign the
same values for linear and nonlinear material properties as
we have used in the one-dimensional case. The basic FDTD
parameters that we use in our three-dimensional simulation
are shown below:

Dimensions of the square waveguide:
x = (.6 micrometers,
y = 0.6 micrometers, and
z = 37.5 micrometers,
Uniform cubic cell size = 0.0015 micrometer
(i.e. Ax=4y=A47),
Number of Ax cells in the x direction = 40,
Number of Ay cells in the y direction = 40,
Number of 4z cells in the z direction = 2,500
(ranging from z = -1,000 to z = 1,500),
Time step increment = 0.025 femtosecond
(l.e. At = A/2¢),
Number of time steps = 8000
(or total simulation time = 200 femtoseconds).
To excite an optical TE;y mode, we use the following
expression for the time dependent Gaussian pulse:

Gaussian Pulse(t)=A, exp [—((t—lgdelu). )/T]g )2] (4.8)

where A, is the driving pulse amplitude with an arbitrarily
assigned value of 100.0 volts/meter, 7, is the width of the
Gaussian spread with an arbitrarily assigned value of 3.0
femtoseconds, and ..., 1s the delay time to attain the peak
value with an arbitrarily assigned value of 10.0
femtoseconds. Shown in Figure 11 are time-dependent
electric field plots of the Gaussian driving pulse which
excites an optical TE;; mode and the resulting optical TEy,
mode incident at the center of the x-y plane of the free-
space/dispersive medium interface.

We use the LIAO absorbing boundary condition at the left
and right outermost x-y planes (at z=-1,000 and z =1,500)
to absorb outgoing waves.

As we did in the one-dimensional case studies, we first
calculate the strictly linear dispersive case by setting both
Raman scattering nonlinear strength, zp,”, and Kerr-type
instantaneous nonlinear coefficient, ao,”), to zero. Then, we
perform nonlinear calculations by considering two extreme
cases: the purely Kerr-type instantaneous nonlinear
dispersive case  with Zg,”) =0 and o =20,000
(volts/meter)?, and the purely Raman scattering (delayed)
nonlinear dispersive case with yp,%’ = 200,000 (volts/meter)™
and a” = 0.

To update electric field values for the next time step, we
use the nonlinear Newton-Raphson iterative method by
making use of the current-time-step electric field values as
the initial guess to solve the coupled cubic equations [see
Eg. (2.31)]. During FDTD calculations, it 1s not uncommon
to see the iterative method requiring more than 10 iterations
to converge to the next-time-step electric field value based
on a convergence criterion of 10 whenever nonlinear self
focusing becomes strong.

Figure 12 shows a comparison of wave energy density
spatial profiles inside the dispersive medium that we obtain
from the strictly linear dispersive, the purely Kerr-type
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instantaneous nonlinear dispersive, and from the purely
Raman scattering nonlinear dispersive cases. These plots are
taken at a time step of 7,500, which is late enough to observe
distinct differences in the three cases. Based on these energy
density plots shown in Figure 12, we can say that the three-
dimensional case studies result in the same qualitative
behavior as we saw in one-dimensional case studies.

V. CONCLUSIONS

Based on the NonLinear Piecewise Linear Recursive
Convolution (NLPLRC) approach presented in this paper, we
can show that it is possible to predict the formation of
nonlinear solitary waves by solving Maxwell’s equations
directly for the propagation of electromagnetic waves in
nonlinear dispersive media that exhibit both instantaneous
Kerr (i.e. ”#0) and Raman scattering (ie. 7, V% 0)
responses. The NLPLRC approach is shown to be equivalent
to the auxiliary differential equation approach provided that
the auxiliary differential equations are solved analytically
using integrating factors and that the same piecewise linear
approximation is used for E(z;x) to integrate inhomogeneous
parts of the auxiliary differential equations. Because we use a
piecewise linear approximation for the time-dependent part
of the electric field vector, the NLPLRC approach results in
second-order accuracy in time. The NLPLRC approach
retains all the advantages of the usual first-order discrete
recursive convolution approach, such as fast computational
speed and efficient use of computer memory; however, the
NLPLRC approach provides second-order accuracy in time.

We point out again that the exponential forms of the linear
and nonlinear susceptibility functions are crucial in allowing
us to implement the recursive feature in our algorithm. Also,
our FDTD formulation for nonlinear dispersive materials
results in having to solve coupled nonlinear (cubic) equations
for the three components of the electric field vector at each
time step as compared to just solving linear equations in the
case of linear dispersive materials.

APPENDIX

For the linear part, when we substitute Eq.(2.6) into
Eq.(2.4) and evaluate t at nAr for the argument of the
susceptibility function, where n denotes the nth time step, we
have

n- I(m+1)AI

(=3 ]

_Om

+1
EU,( +[E;"k E;’k]

(1)
-E/r—mm] JX Y (nAt-7)de
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n-1 (A )
{E} j X (nat-)ar
m=0
(m+1)Ar
+[E,'J’;j’—g;’ka jA [T—-mAt] X (nAt-7)dr }
mat

(A1)

Similarly for the nonlinear part, when we substitute
Eq. (2.6) into Eq. (2.5) and evaluate ¢ at nAt for the argument
of the susceptibility function where n is the nth time step, we
have

nd (mel)ar

(O =]

m=0 mar

l/k Euk + 2E1)k

{[EZ—T’ Eyk] -[T—mAi]
+ [E,’j",j’—EUk] o[ElY - -E} ]
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(At)
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+2EG e [E __ijk]E‘
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Using the change of variable 7=(nAt-7), we can readily
show the existence of the following relationship for the
above integrals:

( m+1)Ar
[ [t-mAt]* f(ndAt—7)dr
mAt
(n—m )At
= | [n-m)At-7 " f(T )dr (A3)

(n-m—1)At

where k takes the values of 0, 1, and 2 and f{1) represents the
time-dependent first order susceptibility function, X, D), or
the time-dependent third order susceptibility functlon

(3)

Xo (1)

Since 7' appearing in the right-hand side of Eq. (A3) is
the integration variable, we can simply replace it by = When
Eq. (A.3) is substituted back into Egs. (A.1) and (A.2), we
can obtain the expressions shown in Egs. (2.8) and (2.12).
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Figure 9: Comparison of our piecewise continuous

Ex (volts‘meter)

Ex (voltsimeter)
3
T ———

Goorjian and Taflove’s

ADE APPROACH

NLPLRC APPROACH

€ FIELD (normalized)
°

02 1
i

E FIELD (romalized)

)

6 8 10

[ 2 4 & 8 10 ) 2 4
Gna Paints x10°

Gnd Pams x10°

recursive convolution approach to
Goorjian and Taflove’s auxiliary
differential equation approach for the
purely Raman scattering nonlinear
dispersive case

L 2 L L
500 1000 1500 2000 2500 3000 3500 4000

[ L 4
Y

500 1000 1500 2000 2500 3000 3500 a000
Time Step (ane fime step =2 SE-17 second)

Figure 11: Temporal plots of a Gaussian driving

pulse used to excite an optical TE
mode and the resulting optical TE o
mode that is incident on the free-
space/dispersive-material interface
at the middle of the interface plane

) EFIELD (normalized)

E FIELD

ACES JOURNAL, VOL. 16, NO. 1, MARCH 2001

6
Grid Points a

Figure 10: Relative comparison of spatial

electric field profiles for a pulse
propagating inside the strictly linear
dispersive medium (top), the purely
Kerr-type instantaneous nonlinear
dispersive medium (middle) and the
purely Raman scattering nonlinear
dispersive medium (bottom)

at time step=350,000

propagation direction

Figure 12: Comparison of spatial electromagnetic

field energy density profiles from
strictly linear dispersive (top), purely
Kerr-type instantaneous nonlinear
dispersive (middle) and purely Raman
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cases at time step=7,500





