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ABSTRACT 
 

In this paper, a new method is presented for analyzing 
the transient electromagnetic response from a 
three-dimensional (3-D) perfectly electric conducting 
body using the time-domain electric field integral 
equation (TD-EFIE). Instead of the conventional 
marching-on in time (MOT) technique, the solution 
method in this paper is based on the Galerkin’s method 
that involves separate spatial and temporal testing 
procedure. Triangular patch basis functions are used for 
spatial expansion and testing functions for arbitrarily 
shaped 3-D structures. The time-domain unknown 
coefficient is approximated as an orthonormal basis 
function set that is derived from the Laguerre functions. 
These basis functions are also used as the temporal 
testing. With the representation of the derivative of the 
time-domain coefficient in an analytic form, the time 
derivative of the vector potential in the TD-EFIE can be 
handled analytically. We also propose an alternative 
formulation to solve the differential form of the 
TD-EFIE. Two methods presented in this paper result in 
very accurate and stable transient responses from 
conducting objects. Detailed mathematical steps are 
included and representative numerical results are 
presented and compared. 
 
I. INTRODUCTION 

For a time-domain integral equation formulation, the 
MOT method is usually employed [1]. A serious 
drawback of this algorithm is the occurrence of late-time 
instabilities in the form of high frequency oscillation. 
Several MOT formulations have been presented for the 
solution of the TD-EFIE to calculate the electromagnetic 
scattering from arbitrarily shaped three-dimensional 
structures using triangular patch modeling technique. An 
explicit solution has been presented by differentiating 
the TD-EFIE and using second order finite difference 
[2]. But the results become unstable for late times. Its 
late time oscillations could be eliminated by 
approximating the average value of the current [3]. In 
addition, to overcome this, a backward finite difference 
approximation for the magnetic vector potential term has 

been presented for the explicit technique [4]. Recently 
an implicit scheme has been proposed to improve the 
stability problem [5]-[8], in addition matrix pencil is 
used in [9] to extrapolate the late time data. Even though 
employing an implicit technique, the accuracy and 
stability are dependent on the choice of the time step. 

In this paper, we present a new technique to obtain 
accurate and stable responses of the TD-EFIE for 
arbitrarily shaped 3-D conducting objects using the 
associate Laguerre polynomials as temporal basis 
functions. The associate Laguerre series is defined only 
over the interval from zero to infinity and, hence, are 
considered to be more suited for the transient problem, 
as they naturally enforce causality [10], [11]. Using the 
associate Laguerre polynomials, we construct a set of 
orthogonal basis functions. Transient quantities that are 
functions of time can be spanned in terms of these 
orthogonal basis functions. The temporal basis functions 
used in this work are completely convergent to zero as 
time increases to infinity. Therefore, transient response 
spanned by these basis functions is also convergent to 
zero as time progresses. Using the Galerkin’s method, 
we introduce a temporal testing procedure, which is 
similar to the spatial testing procedure of the method of 
moments (MoM). By applying the temporal testing 
procedure to the TD-EFIE, we can eliminate the 
numerical instabilities. Instead of the MOT procedure, 
we employ a marching-on in-degree manner as 
increasing the degree of temporal testing functions. 
Therefore, we can obtain the unknown coefficients by 
solving a matrix equation recursively with a finite 
number of basis functions. The minimum degree or 
number of basis functions is dependent on the time 
duration and the frequency bandwidth product of an 
incident wave. We also propose an alternative 
formulation to solve the differential form of TD-EFIE, 
which has been used in [2]. 

This paper is organized as follows. In the next section, 
we describe the general TD-EFIE and set up a matrix 
equation by applying MoM with spatial and temporal 
testing procedure. In section III, an alternative technique 
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for TD-EFIE formulation is presented. In section IV, we 
discuss some numerical results. Finally, some 
conclusions based on this work are presented in section 
V. 

 
II. FORMULATION 
In this section we discuss the TD-EFIE and derive a 
matrix equation to obtain induced currents on the 
conducting scatterer. Let S denote the surface of a closed 
or open conducting body illuminated by a transient 
electromagnetic wave. Since the total tangential electric 
field is zero on the surface for all times, we have 
                        (1) i s

tan
( , ) ( , ) 0, ,t t r+ =⎡ ⎤⎣ ⎦E r E r S∈

where Ei is the incident field and ES is the scattered field 
due to the induced current J. The subscript ‘tan’ denotes 
the tangential component. The scattered field is 

             s ( , ) ( , ) ( , ),t t Φ t
t

∂
= − −∇

∂
E r A r r                        (2) 

where  and  are the magnetic vector and the 
electric scalar potential given by, respectively, 

A Φ

               ( , )
( , )

4 S
t

R

µ τ

π

′
′= ∫

J r
A r dS                             (3) 

             
1 ( , )

( , ) .
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q
Φ t

R

τ

πε

′
′= ∫

r
r dS                        (4) 

In (3) and (4), R ′= −r r  represents the distance 
between the arbitrarily located observation point r and 
the source point , ′r /t R cτ = −  is the retarded time, 
µ and ε are permeability and permittivity of the space, 
and is the velocity of propagation of the 
electromagnetic wave in that space. The electric surface 
charge density is related to the surface current density 

 by the equation of continuity 

c

q
J

                    ( , ) ( , )t q
t

∂
∇ ⋅ = −

∂
J r r t .                       (5) 

Combining (1) and (2) gives 

     [ ]i

tan

tan

( , ) ( , ) ( , ) ,t Φ t t
t

r S
∂

+ ∇ =
∂

∈⎡ ⎤
⎢ ⎥⎣ ⎦

A r r E r .           (6) 

Equation (6) with (3) and (4) constitutes a TD-EFIE 
from which the unknown current  may be determined. J
 
1. SPATIAL TESTING PROCEDURE 

The surface of the structure to be analyzed is 
approximated by planar triangular patches. As in [12], 
we define the vector basis function associated with the 
n-th common edge as  
                                                (7-1) ( ) ( ) ( )n n n

+ −= +f r f r f r

                
,

2( )

0 ,

,
n

n

nn

n

l
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±

∈
=

∉

⎧
⎪
⎨
⎪⎩

ρ r
f r

r

                      (7-2) 

where  and nl nA±  are the length of the edge and the area 

of triangle nT ± . n

±ρ  is the position vector defined with 

respect to the free vertex of . The electric current J  
on the scattering structure may be approximated in terms 
of the vector basis function as 

nT ±

                                                (8) 
1

( , ) ( ) ( ),
N

n n
n

t J t
=

= ∑J r f r

where  represents the number of common edges, 
discounting the boundary edges in the triangulated 
model of the conducting object. When (8) is used in (6), 
we meet a time integral term from the relation (4) and 
(5). For convenience to avoid this problem and to handle 
the time derivative of a vector potential analytically, we 
introduce a new source vector  defined by 

N

( , )te r

                          ( , ) ( , ),t
t

∂
=
∂

J r e r t                            (9) 

where the relation between this source vector and charge 
density is given as 
                        ( , ) ( , )q t t= −∇ ⋅r e r .                         (10) 
By using (8) and (9), we may express  

                      .                        (11) 
1

( , ) ( ) ( )
N

n n
n

t e t
=

= ∑e r f r

We now solve (6) by applying Galerkin’s method in 
the MoM context and hence the testing functions are 
same as the expansion functions. By choosing the spatial 
expansion function  also as the spatial testing 
functions, we have from (6) 

( )mf r

   
i

( ), ( , ) ( ), ( , )

( ), ( , ) ,

m m

m

t Φ t
t

t

∂
< > + < ∇ >

∂

=< >

f r A r f r r

f r E r

         (12) 

where 1, 2, , .m N= The next step in the MoM 
procedure is to substitute the unknown expansion 
functions defined in (11) into (12). In computing the 
inner product integrals in (12), we assume that the 
unknown quantity does not appreciably change within a 
triangle patch so that 

    ,
pq

pq pq cpmn
mn mn m n

R R
t t R

c c
τ τ= − → = − = −r r cq         (13) 

where  and  are + or -.  is the position vector of 

the center in triangle 

p q c

m

±r

nT ± . With the assumption (13) and 
using (3), (4), and (9)-(11), (12) can be written as 

85Jung, et al.: Analysis of Transient Scattering From Conductors Using Laguerre Polynomials 



2

2
1 ,

( ) ( ) ( ),
pqN

pq pq pqmn
mn n mn n mn m

n p q

d b
a e e V t
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µ τ τ
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q
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mn mS S

a d
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′
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1 (

( )
4

q
pq p n

mn mS S
b d

Rπ

′ ′∇ ⋅ ′= ∇ ⋅∫ ∫
f r

f r
)

S dS                    (16) 

               .                        (17) i( ) ( ) ( , )m mS
V t t dS= ⋅∫ f r E r

The integrals (15)-(17) may be evaluated by the method 
described in [12] and [13]. 
 
2. TEMPORAL BASIS FUNCTIONS 

Consider the set of functions [14], 

( ) ( ), 0 , 0, 1, 2,
!

t j
j t

j j

e d
L t t e t j

j dt
−= ≤ < ∞ = .      (18) 

These are the Laguerre functions of degree . They are 
causal, i.e., exist for . They can be computed in a 
stable fashion recursively through 

j
0t ≥

0 ( ) 1L t =                                     (19-1) 

1( ) 1L t t= −                                (19-2) 

[ ]1

1
( ) (2 1 ) ( ) ( 1) ( )j jL t j t L t j L t

j −= − − − − 2j ≥

j

2j− , .                                                                                                                            

(19-3) 
The Laguerre functions are orthogonal as 

      .                   (20) 
0

1,
( ) ( )

0,
t

i j ij

i j
e L t L t dt

i j
δ

∞ −
=

= =
≠

⎧
⎨
⎩

∫
An orthonormal basis function set can be derived from 
the Laguerre function through the representation 
                              .                          (21) / 2( ) ( )t

j t e L tφ −=

These functions can approximate a causal response quite 
well. A causal electromagnetic response function ( )f t  
at a particular location in space for  can be 
expanded using (21) as  

0t ≥

                            .                          (22) 
0

( ) ( )j j
j

f t f tφ
∞

=

= ∑
By multiplying a function ( )f t  with (21) and 
integrating from zero to infinity, which we call a 
Laguerre transform here, we get 

                           .                          (23) 
0

( ) ( )i t f t dt fφ
∞

=∫ i

In obtaining (23), the orthogonal relation (20) was used. 
Also, we can obtain the result of the Laguerre transform 
for the derivative of the function ( )f t  as 

         ∫                      (24) 

where (0) 0f =  was assumed and  was used. 
Using a similar relation between (22) and (23), we can 
expand the derivative of the function 

( ) 0iφ ∞ =

( )f t  using (24) as 

        
1

0 0

1
( ) ( )

2

j

j k j
j k

d
f t f f t

d t
φ

∞ −

= =

= +⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ .                   (25) 

Similarly, if we assume , the result of 
expanding the second derivative of the function 

' (0) 0f =
( )f t  

can be obtained as 

     
2 1

2
0 0

1
( ) ( ) ( )

4

j

j k
j k

d
f t f j k f t

d t
φ

∞ −

= =

= + −⎡⎛ ⎞⎤
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∑ ∑ j .  (26) 

 
3. TEMPORAL TESTING PROCEDURE 

The transient coefficient introduced in (11) can be 
expanded as  

                                                    (27) ,
0

( ) ( ),n n j j
j

e t e stφ
∞

=

= ∑
where s  is a scaling factor. By controlling this factor s , 
the support provided by the expansion can be increased 
or decreased. Using (26), therefore, the expression of 
expanding the second derivative of the coefficient is 
given as 

2 1
2

, ,2
0 0

1
( ) ( ) ( )

4

j

n n j n k j
j k

e t s e j k e st
dt

φ
∞ −

= =

= + −⎡ ⎤
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∑ ∑ 
d

.     (28) 

Substituting (27) and (28) into (14) and taking a 
temporal testing with ( )i stφ , which is the Laguerre 
transform defined in (23), we have 

2

,

,
1

1 , 0 2

,
0

4

( )

,

pq
pq mn
mn n j pqN
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(29) 
where 

0
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pq pq

mn mn
ij i j

R R
I s st st s

c c
φ φ

∞

= −
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
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∫ d st

st

           (30) 

                 .                       (31) , 0
( ) ( ) ( )m i i mV st V t dφ

∞

= ∫
Now, we consider the integral defined in (30). For 
simplicity, we rewrite (30) as 

             
0

( ) ( ) ( )ij i jI y x x yφ φ
∞

= −∫ dx .                       (32) 

Through the following change of variable z x y= −  in 
(32), we have 
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       / 2( ) ( ) ( )y z

ij i jy
I y e e L z y L z dz

∞− −

−
= +∫ .                   (33) 

Using the formula (8.971) and (8.974) in [15], we obtain 

   [ ]1

0

( ) ( ) ( ) ( )
i

i k i k i k

k

L z y L z L y L y− − −
=

+ = −∑ .               (34) 

Substituting (34) into (33), we obtain 

[ ]/ 2

1

0

( ) ( ) ( ) ( ) ( ) .
i

y z

ij i k i k k jy
k

I y e L y L y e L z L z dz
∞− −

− − − −
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Because the Laguerre function is defined for 0z ≥ , the 
lower limit of the integral in (35) may be changed from 

y−  to zero, and the integral can be computed easily 

using (20). Finally, we have 

 
[ ]/ 2

1
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.
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I y

j i
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⎧
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           (36) 

We note that 0
ij

I =  when j i> . Therefore we can 

write the upper limit for the summation symbol as i  
instead of ∞  in (29). In this result, moving the terms 

including 
,n j

e , which is for j i< , to the right-hand side, 

we obtain 
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1

2
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Rewriting (37) in a simpler form, we have 

        , , ,
1

, 1, 2, , ,
N
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n

e V P m Nα
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where 
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(40) 

In obtaining (39), we used ( ) / 2y

ii
I y e−=  from (36). 

Finally, we can write (38) in a matrix form as 

    [ ] , ,
, 0, 1, ,

mn n i m i
e iα γ= = ∞⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ L ,                    (41) 

where
, , ,m i m i m i

V Pγ = + . It is important to note that [ ]
mn

α  

is not a function of the degree of the temporal testing 

function. Therefore, we can obtain the unknown 
coefficients by solving (41) by increasing the degree of 
the temporal testing functions. The coefficients of the 

current ( )
n

J t  oscillate for low degrees and die down for 

high degrees. We can solve the coefficients recursively 
until they are small enough. Therefore, this formulation 
is marching on in degree as opposed to marching –on-in 
time for an implicit procedure. The matrix equation is 
first solved for i = 0 and then continued for different 
values for i which corresponds to different order of the 
Laguerre functions. 

We need the minimum degree or number of temporal 
basis functions, M  in computing (41). This parameter is 
dependent on the time duration of the transient response 
and the bandwidth of the excitation signal. We consider 
a signal with a bandwidth B in frequency-domain and 

the duration 
f

T in the time-domain. When we represent 

this signal by a Fourier series, the range of the sampling 
frequency is B k f B− ≤ ∆ ≤ , where k  is an integer and 

1/
f

f T∆ = . So we get /
f

k B T≤ . Hence the minimum 

number of temporal basis functions becomes 

2 1
f

M BT= + . We note that the upper limit of the 

integral in (31) can be replaced by a time duration 
f

sT  

instead of infinity. 
 
4. CURRENT AND FAR FIELD 

By solving the matrix equation (41) in a marching-on 
in degree manner, the electric transient current 
coefficient in (8) is expressed using the relation (9) and 
(11) with (25) as 

  
1 1

, ,

0 0

1
( ) ( ) ( )

2
.

M j

n n n j n k j

j k

d
J t e t s e e st

dt
φ

− −

= =

= = +⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑     (42) 

Once the current coefficients have been obtained, we can 
compute the far field. We explain the analytic method to 
compute the far field directly by using the coefficient 

( )
n

e t  obtained from (41). Neglecting the scalar potential 

term, the far field is given by 

                  s ( , ) ( , )t t
t

∂
≈ −

∂
E r A r .                           (43) 

Substituting (3), (9), and (11) into (43) with (7-1), we get 

   
2

s

2
1

( )
( , ) ( )

4
.

qN

n

nS
n q

d
t e dS

dt R

µ
τ

π =

′
′≈ − ∑∑∫

f r
E r         (44) 

We make the following approximation in the far field: 
ˆR r ′≈ − ⋅r r  for the time retardation term /t R cτ = − , 

R r≈  for the amplitude term 1 / ,R  where ˆ / r=r r  is a 
unit vector in the direction of the radiation. The integral 
in (44) is evaluated by approximating the integrand by 

the value at the center of the source triangle q

n
T . 
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Substituting (7-2) into (44) and approximating cq

n
′ ≈r r  

and q cq

n n
≈ρ ρ , we obtain 
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2
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( , ) ( )
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,
N

cq q

n n n n

n q

d
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r dt

µ
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≈ − ∑ ∑E r ρ                    (45) 

where ˆ( ) /q cq

n n
t r cτ ≈ − − ⋅r r  and  

 
2 1 1
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dt
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∑ ∑   (46) 

 
 
III. ALTERNATIVE FORMULATION 

In this section, we present an alternative method of 
solving TD-EFIE as given in (1), which has been 
extensively used in the literature. The goal is to see 
which form provides more accurate solution as this 
method contains double derivatives. By differentiating 
(6), we get 

2

i

2

tantan

( , ) ( , ) ( , ) ,t Φ t t
t t t

∂ ∂ ∂
+ ∇ =

∂ ∂ ∂
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

A r r E r

.S∈r .             (47) 
In a similar manner as in (12), we obtain the result of the 
spatial testing from (47) as 

  

2

2

i

( ), ( , ) ( ), ( , )

( ), ( , ) .

m m

m

t Φ t
t t

t
t

∂ ∂
< > + < ∇ >

∂ ∂

∂
= < >

∂

f r A r f r r

f r E r

(48) 

Substituting (3)-(5), (7), and (8) into (48) and with the 
use of (13), we get 
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2
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pqN

pq pq pqmn

mn n mn n mn m
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a J J V t

dt
µ τ τ
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where pq

mn
a  and pq

mn
b  are same as to (15) and (16), 

respectively, and 

                    ( ) ( ) ( , ) .i

m mS
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t

∂
= ⋅

∂∫ f r E r              (50) 

The transient current coefficient can be written as 

                        
,

0
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n n j j

j

J t J stφ
∞

=

= ∑                            (51) 

where s  is a scaling factor. Using (26), the second 
derivative of the current coefficient is given as  
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dt
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Substituting (51) and (52) into (49) with the temporal 

testing with ( )
i

stφ , we get 
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ε
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⎜ ⎟⎢ ⎥ ⎛ ⎞⎝ ⎠⎢ ⎥ ⎜ ⎟
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⎢ ⎥⎣ ⎦

∑∑∑
∑

(53) 

where 
,m i

V  is of the same form given in (31), but ( )
m

V t  

is different. Changing the upper limit of the summation 
symbol to i  instead of ∞  in (53) and moving the terms 

including 
,n j

J , which is for j i< , to the right-hand side, 

we obtain 
2

,

1 ,

21
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4

4

pq pqN
pq mn mn

mn n i ii

n p q
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s b R
a J I s

c

s b R
V a J I s

c

µ
ε

µ
ε

=

−

= =

+

= − +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
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1

2

,

1 , 0 0

( )
pqN i j

pq mn

mn n k ij

n p q j k

R
s a j k J I s

c
µ

−

= = =

− −
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∑∑ ∑ .   (54) 

Rewriting (54) in a simple form, we have 

               
, , ,

1
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N
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=
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where 
mn

α  is same as (39) and 
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,
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,
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0 0
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R
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µ
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−

=

−
=
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∑
∑∑

∑∑
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Lastly, we can write (55) in a matrix form as 

                           [ ][ ] [ ], ,
,

mn n i m i
Jα γ=                             (57) 

where
, , ,

.
m i m i m i

V Pγ = +  By solving (57) by a 

marching-on in degree algorithm with M  temporal 
basis functions, we can obtain the current coefficient 
directly, which is given as 

                         
1

,

0

( ) ( ).
M

n n j j

j

J t J stφ
−

=

= ∑                           (58) 

Substituting (3) and (8) into (43) with (7), and using 
(25), the far field is given as 

         s

1

( , ) ( )
8

,
N

cq q

n n n n

n q

d
t l J

r dt

µ
τ

π =
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where 

       
1 1

, ,

0 0

1
( ) ( )

2
.

M j
q q

n n n j n k j n

j k

d
J s J J s

d t
τ φ τ

− −
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= +⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑      (60) 

The formulation provided in this section computes the 

coefficients of ( )
n

J t  directly. We don’t need to convert 

( )
n

e t  to ( )
n

J t  by (42). However, this formulation 
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requires the derivative of the incident wave as in (50). 
Gaussian wave is used extensively in transient analysis, 
and we have the analytic form of derivative of Gaussian 
wave. Two formulations will obtain the same 
performance by using Gaussian wave, as shown in the 
next section. If we have an arbitrary input, the 
formulation introduced in section II is preferred. 

It’s important to notice that the minimum degree can 
be obtained at the optimal scaling factor s. We can 
estimate the range for convergence and the optimal 
scaling factor s by B and Tf, and solve Jn,i recursively, 
until Jn,i converges to zero ([16]). Stable performance 
can be obtained by this way. 

 
IV. NUMERICAL EXAMPLES 

In this section, we present the numerical results for 
three representative 3-D scatterers, viz. a sphere, a cube, 
and a cylinder, as shown in Fig. 1. The scatterers are 
illuminated by a Gaussian plane wave, in which the 
electric field is given by 

                     
2i

0

4
( , ) ,t

T
γ

π
−=E r E e                            (61) 

                       0

4 ˆ(ct ct
T

γ = − − ⋅r k),                            (62) 

where  is the unit vector in the direction of wave 
propagation,  is the pulse width of the Gaussian 
impulse, and  is a time delay which represents the time 
at which the pulse peaks at the origin. In this work, the 
field is incident from  and  with 

k̂
T

0t

0φ = 0θ = ˆ ˆ= −k z  

and . To avoid problems with the internal 
resonance of the structure, we use a pulse of width 

0
ˆ=E x

T = 8 
lm with 12 lm, which has a frequency spectrum of 
125 MHz. The unit ‘lm’ denotes a light meter. A light 
meter is the length of time taken by the electromagnetic 
wave to travel 1 m. We set  and 

0ct =

910s = 80M = , which 
is sufficient to get accurate solutions. For comparison, 
we present MOT solutions using the method in [8] and 
the results obtained by taking the IDFT solution 
calculated from the frequency-domain EFIE. In all 
figures to be shown, the legends ‘form1’ and ‘form2’ 
implies results computed by the formulation in section II 
and section III, respectively. 

As a first example, we consider a conducting sphere of 
radius 0.5 m centered at the origin as shown in Fig. 1(a). 
The first resonant frequency of this sphere is 262 MHz. 
There are twelve and twenty-four divisions along the θ  
and φ  directions with equal angular intervals. This 
results in a total of 528 patches and 792 common edges, 
and =2.23 cm, where  represents the minimum 
distance between any two distinct patch centers. The 

minR minR

θ − directed current at  and , and 90θ = 7.5φ =

φ − directed current at  and  on the 
sphere are indicated by arrows in Fig. 1(a). Fig. 2 shows 
the transient response for the 

7.5θ = 90φ =

θ − directed and 
φ − directed current. The time step in the MOT 

computation is chosen such that  in order to 
generate an implicit solution. It is important to note that 
all the four solutions show good agreements except the 
late-time oscillation in the MOT solution. We can see 
that solutions of the presented method 1 and 2 are stable 
and the agreement between each other is very good. Fig. 
3 compares the transient response of two presented 
methods with the Mie series solution and the IDFT of the 
frequency-domain EFIE solution for the far scattered 
field from the sphere along the backward direction. All 
the four solutions agree well as is evident from the 
figure. 

min4c t R∆ =

As a second example, consider a conducting cube, 1 m 
on a side, centered about the origin shown in Fig. 1(b). 
The first resonant frequency of this cube is 212 MHz. 
There are eight divisions along the x ,  and  
directions, respectively. This represents a total of 768 
patches and 1,152 common edges, and =5.57 cm. 
The 

y z

minR
z −  and x − directed current at the side faces are 

indicated by arrows in Fig. 1(b). Fig. 4 shows the 
transient response for the z −  and x − directed currents. 
The time step in the MOT computation is chosen as 

 in order to generate an implicit solution. 
Here the agreement between the results from the IDFT 
and two presented methods is very good. It is important 
to note that the MOT solution shows some instability. 
Fig. 5 compares the transient response of two presented 
methods and the IDFT of the frequency-domain EFIE 
solution for the far scattered field from the cube along 
the backward direction. All the three solutions agree 
well. 

min2c t R∆ =

As a final example, we show the transient response 
from a conducting cylinder with a radius of 0.5 m and 
height 1 m, centered at the origin as shown in Fig. 1(c). 
We subdivide the cylinder into four, twenty-four, and 
eight divisions along , r φ  and  directions, 
respectively. This represents a total of 720 patches with 
1,080 common edges, and =2.15 cm. The z

z

minR −  and 
φ − directed current at the side faces are indicated by 
arrows in Fig. 1(c). Fig. 6 shows the transient response 
for the z −  and φ − directed currents. The time step in 

MOT computation is chosen as  in order to 
generate an implicit solution. Here the agreement 
between the results from the IDFT and two presented 
methods is very good, while MOT solution shows 

min4c t R∆ =

89Jung, et al.: Analysis of Transient Scattering From Conductors Using Laguerre Polynomials 



instability. Fig. 7 compares the transient response of two 
presented methods and the IDFT of the 
frequency-domain EFIE solution for the far scattered 
field from the cylinder along the backward direction. All 
the three solutions agree well without late-time 
oscillation. 

 
V. CONCLUSION 

We presented two methods to solve the time-domain 
electric field integral equation for three-dimensional 
arbitrarily shaped conducting structures. To apply MoM 
procedure, we used triangular patch functions as spatial 
basis and testing functions. We introduced temporal 
basis function set derived from Laguerre polynomials. 
The advantages of proposed method is to guarantee the 
late time stability. The temporal derivative can be treated 
analytically. Transient electric current and far field 
obtained by the two presented methods are accurate and 
stable. The agreement between the solutions obtained 
using the two proposed methods and the IDFT of the 
frequency domain is excellent. 

 
 

(a) 

 
(b) 

 
(c) 

Fig. 1. Triangle patching of a conducting objects. (a) 
sphere. (b) cube. (c) cylinder. 

 

 
(a) 

 
(b) 

Fig. 2. Transient current on the sphere. (a) θ − directed 
current. (b) φ − directed current. 
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Fig. 3. Scattered far field from the sphere along 

backward direction. 

 
(a) 

 
(b) 

Fig. 4. Transient current on the cube. (a) z − directed 
current. (b) x − directed current. 

 
Fig. 5. Scattered far field from the cube along backward 

direction. 

 
(a) 

 

 
(b) 

Fig. 6. Transient current on the cylinder. (a) z − directed 
current. (b) φ − directed current. 
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Fig. 7. Scattered far field from the cylinder along 

backward direction. 
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