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Abstract—Engineered materials that demonstrate a specific
response to electromagnetic energy incident on them in an-
tenna and radio frequency component design applications are
in high demand due to both military and commercial needs.
The design of such engineered materials typically requires
numerically intensive computations to simulate their behavior
as they may have electrically small features on a large area
or often the overall system performance is required, which
means modeling the entire integrated system. Furthermore, to
achieve an optimal performance these simulations need to be
run many times until a desired solution is achieved, presenting
a major hindrance in arriving at a feasible solution in a
reasonable amount of time. One example of such applications
is the design of antireflective (AR) surfaces at millimeter wave
frequencies, which often involves sub-wavelength gratings in
an electrically large multilayer structure. This paper investi-
gates the use of field-programmable gate arrays (FPGAs) and
graphics processing units (GPUs) as coprocessors to the CPU
in order to expedite the computation time. Preliminary results
show that the hardware implementation (100 MHz) on Xilinx
Virtex4LX200 FPGA is able to outperform a single-thread
software implementation on Intel Itanium 2 processor (1.66
GHz) by 20 folds. However, the performance of the FPGA
implementation lags behind the single-thread implementation
on a modern Xeon (2.26 GHz) by 3.6×. On the other hand,
modern GPUs demonstrate an evident advantage over both
CPU and FPGA by achieving 20× speedup than the Xeon
processor.

Index Terms—Antireflective Surface, Engineered Materials,
FPGA, GPU, Parallel Computing, Reconfigurable Program-
ming, High-Performance Computing.

I. INTRODUCTION

The design of engineered materials that demonstrate a
specific response to incident electromagnetic energy often
requires the use of periodic structures with dimensions that
are much smaller than the wavelength for electrically large
structures (i.e., overall size of many wavelengths). As a result,
the accurate and fast modeling of these large scale structures
with fine features often becomes a major challenge. The
challenge is even bigger when these models have to be run
iteratively to identify an optimal solution. Recently, hardware
accelerated computing has been gaining momentum due to
its applicability to parallel computing while using a fraction
of the power requirement of the conventional microprocessors
and requiring much less cost in comparison to supercomputers.

The objective of this paper is two folds: (i) investigate the
use of FPGAs and GPUs as coprocessors to CPU in electro-
magnetic simulations, (ii) utilize the hardware acceleration in
simulating complex devices and optimizing their performance.
These objectives will be achieved in the context of the design
of antireflective (AR) surfaces with sub-wavelength gratings.

A common approach to the design of AR surfaces in
optical regimes is to coat the surface with multiple layers
of thin films with specific dielectric properties that result in
the desired performance. This approach is not practical at
millimeter wave frequencies as there is limited availability
of dielectric materials with the desired material properties.
For this purpose, alternative techniques using gratings in the
substrate can be used to simulate the same effect [1]. The
gratings in essence modify the effective dielectric property
of each layer. As a first order approximation, an effective
permittivity for each layer can be computed using the effective
media theory [2]. However, this approach is only suitable
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Table 1: Comparison between FPGA and GPU
Criterion FPGA GPU

Power Consumption Low (Virtex4LX200: ~10 W) High (GTX 480: 450 W)
Cost High (Virtex4LX200: ~$6,000) Low (GTX 480: $500)

Programming

Learning Curve Long Short
Difficulty High (Use hardware discription language) Low (Use high level language)
Flexibility High Low
Portability Low High

Floating-Point Performance Low High

for gratings with dimensions that are much smaller than the
incident wavelength. For the case of sub-wavelength gratings
(i.e., resonant regime) considered in this paper, a more precise
approach is required as the assumptions of the effective media
theory are no longer valid.

This paper uses the rigorous coupled wave (RCW) algo-
rithm, which employs an eigenmode approach as described
in [3], to model the AR surface created with sub-wavelength
gratings. RCW algorithm applies to structures with periodic
gratings. The electric field and the periodic permittivity values
inside the structure are expanded into a Fourier series in spatial
harmonics, resulting in a matrix of coupled wave equations.
With this approach, the field inside the medium is expanded
in terms of the space harmonics in the periodic structure and
phase matched to the fields outside the grating. The fields can
be treated as waveguide modes in the grating region, and the
total field is expressed as a sum of all possible modes.

The remaining part of the paper is organized as follows.
Section II describes the underlying principles of hardware
acceleration and presents the features of FPGA and GPU
with particular attention to the systems used in this imple-
mentation. The details of the RCW algorithm are provided
and its numerically intensive components are identified in
Section III. Section IV describes the implementation of the
RCW algorithm on two different platforms: a state-of-the-art
reconfigurable computer, SGI Altix RASC RC100 [4], and
the NVIDIA GPUs (i.e., Tesla C1060 and GeForce GTX480).
The platform specifications for the hardware implementation
and the interaction between the CPU and the two hardware
platforms are also presented in this section. Significant per-
formance improvement has been achieved on both FPGA and
GPU platforms compared with the software implementation
on Intel Itanium 2 and Xeon E5520 processors. Finally, the
conclusion remarks are given in Section VI.

II. HARDWARE ACCELERATION ON FPGA
AND GPU

Parallelism and pipelining are in the essence of hardware
accelerated computing. A more conventional way of hard-
ware acceleration based on von-Neuman architecture, where
instructions and data are stored in the same memory, is
typically achieved by the use of multiple processors in a
system. In this approach, instruction stream programming can
be used as in any traditional computer. An example of such a
system is the Beowulf cluster [5]. As an alternative, this paper
focuses on a different kind of hardware acceleration, where a
coprocessor is used to support the CPU for specific tasks in an
algorithm. Traditional von-Neuman architectures tend to create

bottlenecks between the CPU and the main memory. The use
of a dedicated coprocessor with its own memory can accelerate
numerically intensive computations. One of the early uses of
such coprocessors is the digital signal processor (DSP), which
is a highly specialized form of a microprocessor. While the
use of DSPs was universal for hardware acceleration in its
early stages, the growing need for flexibility for many compu-
tationally intensive applications outstripped the functionalities
offered by these chips. As a result, FPGAs, which are a form
of highly configurable hardware, began entering the market.
FPGAs contain programmable logic components called “logic
blocks”, and a hierarchy of reconfigurable interconnects that
allow the blocks to be connected together to perform custom
computation. With the abundance of available transistors,
modern FPGAs are capable of carrying out big scientific
applications. Thousands of performance speedup has been
observed on reconfigurable computers [6].

While FPGAs are highly reconfigurable and energy effi-
cient, there is a prize for the flexibility offered by these
platforms, i.e., the difficulty in hardware implementation.
Typically, hardware description languages, such as Verilog and
VHDL, are required to program the FPGAs in order to achieve
desirable performance speedup.

Recently, another platform, i.e., graphics processing unit,
has been gaining popularity due to their relatively easier
learning curve. GPU was presented as early as in 1989 as
a stream computing engine [7]. Modern GPUs from both
NVIDIA and AMD consist of hundreds of stream processing
units and are capable of achieving remarkable processing
parallelism. Both companies provide SDK to facilitate the end
user use high level languages (e.g., C language) to program
the GPUs, therefore significantly lowering the programming
difficulty.

FPGAs and GPUs, have demonstrated the ability to speed
up a wide range of applications from image processing to
encryption, as demonstrated in previous work [8]–[12]. Each
technology has its advantage and disadvantage, as listed in
Table 1. In general, GPU provides the ease of use and higher
parallelism. On the other hand, FPGA consumes much less
power, has better programming flexibility, and provides deep
pipelining, which is very useful for many applications.

III. RIGOROUS COUPLED WAVE
ALGORITHM

The rigorous coupled wave (RCW) algorithm applies to
diffraction problems from multiple layers with periodic grat-
ings. It is based on an extension of enhanced transmittance
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matrix approach in [13] and adopts Lalanne’s improved eigen-
value formalism [14]. A detailed discussion on the RCW
algorithm can be found in these references. We provide a brief
overview in this section in order to describe our motivations
for the hardware implementation.

The stacked multiple layer in RCW algorithm can consist of
any number of gratings. However, all gratings must be periodic
with the same periodicity along a given direction on the plane.
The periodicity results in a spatially periodic permittivity (and
inverse permittivity) within each layer and can be represented
as a Fourier series expansion, as follows.

εl(x, y) =
∑
g,h

εl,gh exp
(
j

2πgx
Λx

+ j
2πhy
Λy

)
, (3a)

ε−1
l (x, y) =

∑
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Al,gh exp
(
j

2πgx
Λx

+ j
2πhy
Λy

)
. (3b)

where εl,gh and Al,gh are the Fourier coefficients for the lth
layer in the stack for the permittivity and inverse permittivity
respectively. The electric field inside the layers can similarly
be expressed as a Fourier series in terms of spatial harmonics.
Maxwell’s equations for the layered structure can be written
in terms of the tangential components of the electric and
magnetic fields, resulting in a coupled equation set in (1),
where Sl represents the amplitudes of the spatial harmonics
of the electric field in the lth layer, with subscripts x and y
denoting the directions of periodicity in the plane of the stack.
The parameters B and D in (1b) are matrices given as

B = kxε
−1
l kx − I, (4a)

D = kyε
−1
l ky − I. (4b)

The kx and ky in (1b) and (4) are diagonal matrices formed
by kxm

and kyn
as shown in (5), in which k0 is the free space

wave number.

kx =
kxm

k0
, (5a)

ky =
kyn

k0
. (5b)

kxm
and kyn

are the wave vector components along x and
y, respectively. They are computed from phase matching and

Floquet conditions as (6).

kxm
= k0

(
n1 sin θ cosϕ−m

(
λ0

Λx

))
, (6a)

kyn = k0

(
n1 sin θ sinϕ− n

(
λ0

Λy

))
. (6b)

Λx and Λy in (3) and (6) represent the periodicity of the
gratings along x and y respectively. α in (1b) is a grating
geometry dependent parameter, which is a real positive number
between [0, 1] as introduced in [14].

Therefore, the coupled wave equation can be solved by
finding the eigenvalues of the matrix Ωl, which is a function
of the stack properties. The rank of this matrix is M × N ,
where M and N are the number of spatial harmonics retained
along the two dimensions of periodicity in the plane of stacked
layers. Ideally an infinite number of them are needed for an
exact solution but truncation with minimal error is possible.
Despite this truncation, the rank can be in the order of mag-
nitude of 400 or more for a typical application of AR surface
design. Hence, the most numerically intensive component
of the RCW algorithm is this eigenvalue computation. The
hardware platforms will be used to implement the eigenvalue
computations of the RCW algorithm to achieve acceleration.

A. QR eigenvalue algorithm
Given a square matrix A ∈ Cn×n, an eigenvalue λ and

its associated eigenvector v are, by definition, a pair obeying
the relation Av = λv. Equivalently, (A − λI)v = 0 (where
I is the identity matrix), implying det(A − λI) = 0. This
determinant can be expanded into a polynomial in λ, known
as the characteristic polynomial of A. One common method
for determining the eigenvalues of a small matrix is by finding
the roots of its characteristic polynomial. However, a general
polynomial of order n > 4 cannot be solved by a finite
sequence of arithmetic operations and radicals. Therefore,
many numerical iterative algorithms have been proposed [15]
to solve the eigenvalue problem of high-rank square matrices,
such as power method, inverse iteration, Jacobi method, etc.
Among these, the shifted Hessenberg QR algorithm [16]–
[18] is accepted as a practical solution and adopted in most
applications to deal with general square matrices.

There are two phases in the practical QR algorithm, as
described in (2). In the first phase, the original matrix A is re-
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Fig. 1. Using FPGAs as coprocessors in general-purpose
computing.

duced to the upper Hessenberg form H using the Householder
transformation [19]. The second phase involves applying the
implicit QR iteration with shifts on the unreduced Hessenberg
matrix H until it converges to a triangular matrix, i.e., the
Schur form S. The eigenvalues of a triangular matrix are listed
on the diagonal, i.e., the ⊗s in (2), and the eigenvalue problem
is solved once this form is achieved. If the corresponding
eigenvectors are required, they can be calculated using Gaus-
sian elimination and back substitution after the eigenvalues are
available.

IV. HARDWARE IMPLEMENTATION OF
THE RCW ALGORITHM

Both hardware platforms (e.g., FPGA and GPU) will be
used as coprocessors to the CPU to accelerate the most
numerically intensive part of the RCW algorithm, which is the
eigenvalue calculation for the large matrices required in the
RCWA design. Promising results are demonstrated to prove
the efficiency of the hardware implementation compared with
the software implementation of the same algorithm in C. The
acceleration in computation time allows for the design and
optimization of complex AR surfaces as numerous iterations
can be run rapidly on hardware coprocessors.

A. Implementation on Altix RASC RC100 reconfigurable
computer

Reconfigurable computers (RCs) are traditional computers
extended with coprocessors based on reconfigurable hardware
like FPGAs. These enhanced systems are capable of providing
significant performance improvement for applications in many
scientific and engineering domains, such as the electromag-
netics [20], [21]. Due to the limited size of the internal

block RAM memory, multiple SRAM modules are generally
connected to the hardware coprocessor for data storage, such
as the example shown in Figure 1(a).

The implementation of an application on a reconfigurable
computer consists of a hardware part and a software part. The
implementation on the hardware part requires the use of either
hardware description languages (e.g., VHDL, Verilog) or high
level languages, such as Impulse-C [22] or Mitrion-C [23], to
carry out the design in hardware. Multiple techniques, e.g.,
pipelining and single instruction multiple data (SIMD), can
be applied to take advantage of the hardware acceleration.
Multiple dependent tasks in an application can form a pipeline
so that the output of a producer can be forwarded to the
input of a consumer directly. Take the circuit in Figure 3(a) as
one example, multiple primitive operators form a pipeline to
accomplish an advanced operation. Another typical technique,
SIMD as shown in Figure 3(c), is to instantiate multiple
identical processing elements (PEs) so that multiple data items
can be processed in parallel. The theoretical performance of
N identical PEs is N times of a single PE.

Since the hardware implementation depends on the available
resources on the FPGA device (e.g., memory, built-in multi-
pliers, slices), it might be necessary to distribute the hardware
part into multiple FPGA configurations, each of which is
called a bitstream. Once the bitstreams are available, they can
be integrated into the software part, which is executed on the
CPU. From the point of view of a software programmer, a
bitstream can be treated as a software subroutine during the
integration process in spite of the fact that the functionality
is realized in hardware, as shown in Figure 1(b). The inte-
gration process always involves the use of vendor application
programming interfaces (APIs).

In the following text, the numerically intensive part of the
RCW algorithm, i.e., the eigenvalue solver, is described in
terms of the mathematical approach used for the implemen-
tation. This discussion is followed by the details of the im-
plementation of the eigenvalue algorithm on the Altix RASC
RC100 reconfigurable computer along with a description of
the system specifications and architecture of the platform.

1) The FPGA Platform: SGI’s Altix RASC RC100 re-
configurable computer is a blade-based heterogeneous su-
percomputer in which NUMAlink™4 interconnect is used
to connect different types of computing blades, as shown
in Figure 2(a). Each blade itself is a homogeneous node
consisting of the same type of processors, e.g., the CPU or the
FPGA coprocessors. The Altix 450 at The Catholic University
of America includes two CPU blades and one FPGA blade.
The CPU used in the system is Intel Itanium 2 (1.66 GHz).
The detailed architecture of a RASC RC100 FPGA blade
is shown in Figure 2(b). There are two FPGA devices on
a single RASC blade. Each FPGA device, Xilinx Virtex-
4LX200, is equipped with 5 banks of SRAM for local data
storage. The size of each SRAM bank is 8 MB. Every bank
has separate 64-bit read and write ports directly connected
to the FPGA device. Besides the local memory, each FPGA
device is capable of communicating with CPU blades through
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(a) Multi-paradigm computing

(b) RASC RC100 FPGA blade architecture

Fig. 2. Altix RASC RC100 reconfigurable computer.

NUMAlink™4 interconnect, achieving a theoretical 3.2 GB/s
on both directions at the same time. Since the two FPGA
devices have their separate network interface controller, their
communication with other components in the RASC system
is independent to each other. However, there is no direct
communication channel between the two FPGA device on the
same board. This limitation prevents an application from being
implemented on two devices, i.e., part of an application on one
device and part of the same application on the other device. In
other words, the hardware part of an application can be only
implemented on a single FPGA device.

There are several factors that can limit the problem size
an application can deal with when it (or part of it) is im-
plemented on FPGA device. The first one is the number of
basic lookup tables (LUTs) or combined as slices on Xilinx
FPGAs. The bigger an application is, the more hardware
resource its implementation is going to take. The second one
is the number of built-in multipliers. Many scientific and
engineering applications involve the double precision floating-
point operations, particularly multiplications. Basic LUTs can
be used to construct double precision multipliers. However, a
more economic way is to use the built-in multipliers so that
LUTs can be used for other part of the application. The third
limiting factor is the size and the bandwidth of the off-chip
memory. The size of the memory will decide how much data
(including source, intermediate and result data) can be stored.
The bandwidth of the memory will decide the data processing
parallelism the logic can achieve. In this work, it is mainly the

Algorithm 1: Hessenberg Reduction (Vector-based)
Input: A square complex matrix A with rank n
Output: The reduced Hessenberg matrix H
for k=0 to n− 3 do1.1

vk = House(Ak+1:n−1,k); /*Step 1: See Alg. 2*/1.2

Ak+1:n−1,k:n−1 =1.3
Ak+1:n−1,k:n−1 − 2vk(v∗kAk+1:n−1,k:n−1); /*Step 2:
PkAk+1:n−1,k:n−1, Pk = I − 2vkv∗k*/

A0:n−1,k+1:n−1 =1.4
A0:n−1,k+1:n−1 − 2(A0:n−1,k+1:n−1vk)v∗k ; /*Step 3:
A0:n−1,k+1:n−1Pk*/

Algorithm 2: House(x)
Input: A complex vector x
Output: The Householder vector v
α = −eiϕ‖x‖; /*ϕ is the argument of x1*/2.1

u = x− αe1 = x+ eiϕ‖x‖e1; /*e1 = [1, 0, ..., 0]T */2.2

v = u
‖u‖ ;2.3

size of the memory that decide the maximum problem size the
application can deal with, as elaborated in the following text.

2) FPGA implementation of QR algorithm: The RCW al-
gorithm in the most general sense creates a square matrix with
complex entries. Both real part and imaginary part of a matrix
entry are represented in double precision (64-bit) floating-point
format. In the hardware implementation of QR eigenvalue
algorithm on FPGA device, we combine the two physical local
memory banks into a 128-bit wide logical memory bank so
that each memory entry can store one complete matrix entry.
Therefore, the real part and the imaginary part of a complex
value can be accessed simultaneously.

As described in Section III-A, there are two phases in the
QR algorithm. The first phase, i.e., the Hessenberg reduction,
is completely implemented in one FPGA configuration. Part of
the second phase in which the computation is close to the one
in Hessenberg reduction is implemented in another separate
FPGA configuration. Since the computation in both configu-
rations is close, we focus on the description of Hessenberg
reduction in this paper.

The first phase, Hessenberg reduction, is carried out by
applying the Householder reflection for n − 2 iterations (see
Alg. 1), where n is the rank of the original matrix A. Each
iteration comprises three steps, as shown in Table 2. Each step
further includes multiple sub-steps. In our hardware design,
Steps 1, 2, and 3 comprise 4, 3, and 3 sub-steps, respectively.
All iterations, the steps in each iteration, and the sub-steps
within every step have to be carried out sequentially due to
the data dependency among them. More specifically, the 10
sub-steps are carried out in a sequence during the execution.
The advantage of hardware implementation comes from the
pipelined processing within each sub-step. For example, Step
1.1 involves multiplication, addition, accumulation, and square
root operation to calculate the norm of a vector. In hardware
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Table 2: Calculation breakdown of iteration k in Hessenberg reduction
Step Sub-step Calculation Number of clock cycles for computation∗

1

1.1 ‖x‖, ‖x1‖ n− k − 1

3k2 − 9nk + 6n2 − 3n− 2

1.2 x1 r + ‖x‖ cos ϕ, x1 i + ‖x‖ sin ϕ 1
1.3 ‖u‖ n− k − 1
1.4 u/‖u‖ n− k − 1
2.1 m = v∗kAk+1:n−1,k:n−1 (n− k)(n− k − 1)

2 2.2 N = vkm (n− k)(n− k − 1)
2.3 Ak+1:n−1,k:n−1 − 2N (n− k)(n− k − 1)
3.1 m′ = A0:n−1,k+1:n−1vk n(n− k − 1)

3 3.2 N ′ = m′v∗k n(n− k − 1)
3.3 A0:n−1,k+1:n−1 − 2N ′ n(n− k − 1)

∗Ignoring all latencies.

Mul1 Mul2

Add1

Acc1

Sqrt2

Sqrt1 Div1 Div2

Add2 Add3

Mul3 Mul4

Sub1

Acc2

Mul5 Mul6

Add4

Acc3 Sub2 Sub3

×2 ×2

MUX MUXMUXMUX

x1r x1i

||x1||

||x|| ||μ||

MUX MUX MUX

MUX MUXMUXMUX

(a) (b) (c)

MUX multiplexer

Mul multiplier

Add adder

Sub subtractor

Acc accumulator

Div divider

Sqrt square rooter register

Fig. 3. The computing blocks in the hardware implementation: (a) the computing block used in Step 1; (b) the computing
block used in Step 2.1, 2.2, 3.1, 3.2; (c) the computing block used in Step 2.3, 3.3. (Note: (1) all inputs and outputs are
connected to the local memory interface; (2) the control logic is not illustrated in the figure).

implementation, these four operations are carried out in four
operators, which are concatenated together to form a pipeline,
as shown in Figure 3(a). These primitive operators are all
fully pipelined in our design such that one new data item
can be fed into the pipeline every clock cycle. Therefore, it
will take roughly n − k − 1 clock cycles to finish this sub-
step (if we ignore all potential latencies). Table 2 lists the
number of required clock cycles for each sub-step. By putting
all iterations together, the total number of clock cycles required
to reduce a matrix of rank n to its Hessenberg form can be
computed as:

n−3∑
k=0

(3k2 − 9nk + 6n2 − 3n− 2) =
5
2
n3 − 9

2
n− 11. (7)

The detailed hardware implementation of the computing
blocks is illustrated in Figure 3. Since multiple steps have
to be carried out sequentially, many basic computing units are
re-used to reduce the resource cost. For example, the pipeline
chain consisting of Mul1, Mul2, Add1, Acc1, and Sqrt2 are
re-used in Step 1.1 and Step 1.3 to compute ‖x‖ and ‖µ‖,

respectively. cosϕ and sinϕ are calculated on the fly by
using division, i.e., x1r/‖x1‖ and x1i/‖x1‖. Therefore, the
outputs of Step 1.2 correspond to the output of Add2 (i.e.,
x1r + ‖x‖ · x1r/‖x1‖) and Add3 (i.e., x1i + ‖x‖ · x1i/‖x1‖).
The multiplication between matrix/vector and vector/vector in
Step 2.1, 2.2, 3.1, and 3.2 is realized using the pipeline chain
in Figure 3(b). Both the real part and the imaginary part of
a complex entry are computed simultaneously. The control
logic is not illustrated in Figure 3. It is mainly composed by
three components, i.e., (1) a finite state machine whose statuses
represent different steps and sub-steps, (2) the logic to generate
correct read and write address for memory access, and (3) the
logic to control the operations of the units in Figure 3.

The hardware implementation of Hessenberg reduction oc-
cupies 56,520 (63%) slices on the target FPGA device and runs
at 100 MHz. The primitive operators, i.e., the double precision
floating-point adder, multiplier, divider, are generated by using
Xilinx CORE Generator. The accumulator is composed of
adders and FIFOs. The hardware design is coded in Verilog,
synthesized by Xilinx XST, placed and routed by Xilinx
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Fig. 4. The general architecture of an NVIDIA GT200
GPU (SM: streaming multiprocessor, SP: streaming processor,
DFU: double-precision floating-point unit).

Fig. 5. The heterogeneous CPU-GPU board.

ISE 10.1. The operating frequency of the design is mainly
limited by the control logic. The hardware design is capable
of handling the matrix with a rank up to 480. The maximum
size of the matrix is limited by the size of the off-chip memory
in this case as a 480 × 480 complex matrix takes almost 8
MB to store its entries. The other off-chip memory is used
to store the intermediate result in the execution. During the
runtime, the rank of the object matrix is passed to the hardware
design as a parameter through a register. Before the FPGA
starts processing, the original matrix as well as its rank are
transferred from the host to the FPGA. After the processing
is finished, the upper Hessenberg matrix is transferred back to
the host memory.

B. Implementation on NVIDIA GPUs

General-purpose computing on graphics processing units
(GPGPU) is the technique of using GPUs to perform computa-
tion in applications traditionally handled by the microproces-
sors. GPUs are designed traditionally for graphics and thus are
very restrictive in terms of operations and programming. Due
to their nature, GPUs are only effective at tackling problems
that can be solved using stream processing and the hardware
can only be used in certain ways. More precisely, GPUs are
efficient to process the independent elements belonging to a
stream in a parallel fashion. Kernels are the functions that are
applied to each element in the stream. Figure 4 illustrates a

general architecture of an NVIDIA GT200 GPU consisting of
many streaming processors (SPs).

We have implemented Alg. 1 on both NVIDIA Tesla C1060
and GeForce GTX 480 (Fermi) GPUs. The Tesla C1060 is
installed on a dual-socket Intel Xeon workstation, as shown in
Figure 5. The GTX 480 is installed on an Intel Core i7 work-
station. On both workstations, GPU communicate with CPU
through PCI Express 2 ×16 bus. Tesla C1060 (architecture
code-named GT200) features 30 Streaming Multiprocessors,
each of which is further composed of eight single precision
floating-point CUDA streaming processors and one double
precision floating-point unit, with 16KB on-chip storage called
shared memory and 64KB of register windows for massive
threading. The total 240 (single precision) + 30 (double preci-
sion) floating-point processors can achieve an observed peak
performance of 78 GFLOPS for double precision operation.
The Tesla GPU is equipped with 4 GB GDDR3 memory on
board with the theoretical memory bandwidth of 102 GB/s.
The uni-directional bandwidth of the PCI Express 2 bus on
the platform is observed at 5.8 GB/s.

The latest GPU offered by NVIDIA is code-named as
Fermi, which takes a significant leap forward in architecture
highlighted by features such as improved double precision
performance and configurable cache hierarchy. The model
GTX 480 used in our experiments is composed of 15 newly
designed streaming multiprocessors (SMs). Each SM features
32 CUDA streaming processors and is capable of 16 double
precision fused multiply-add operations per clock, which is
an 8× improvement over the GT200 architecture. Another
key architectural difference is that Fermi has two instruction
dispatch units and most instructions can be dual-issued, which
is different from the HyperThreads used in the Intel Nehalem
processors. Two HyperThreads within a single core of Ne-
halem processors share a single instruction fetch and decoding
unit.

The GPU implementations are developed using CUDA [24].
The vector-based diagonal factorization is composed of a
major outer loop that factorizes one column/row per step.
Unfortunately, advanced features offered on the GPU such as
asynchronized communication/computation and concurrently
kernel execution cannot be used for such an algorithm, as
dependency exists among the outer loops and all inner steps.
Therefore the GPU implementation suffers from low occu-
pancy for small problem sizes. In order to optimize the GPU
implementation, firstly we managed to squeeze every inner
computation step except the Householder generator (i.e., Step
1 in Table 2) into the GPU to keep the entire matrix remained
in the GPU memory throughout the computation. In other
words, the Hessenberg reduction is a CPU-GPU co-design
on the hybrid platform as shown in Figure 5. Step 1 in
Table 2 is carried out on CPU and the remaining two steps are
executed on GPU. Fortunately the calculation of Step 1 only
needs the transportation of one column (or part of a column)
of a matrix. Therefore we managed to minimize the round
trip communication overhead to approximately 5% of overall
execution time. All kernels are further incrementally optimized
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Table 3: Platform Characteristics
Criteria Xeon (Nehalem) Tesla C1060 GTX 480
Cores 4 240/30 480

Frequency (GHz) 2.26 1.3 1.4
Double Precision GFLOPs 36 78 672
Memory Bandwidth (GB/s) 25.6 102 177.4

through memory coalescing, using of shared memory and
assigning more work per thread. The configurable L1 cache
on the Fermi GPU introduces more design tradeoffs for users.
In our experiments, for kernels with limited or no usage of
shared memory, configuring the L1 to be 48KB can yield an
approximately 10% improvement on GTX 480. Moreover, we
found that the multi-dimensional threads and blocks configu-
ration can also affect the cache performance, especially when
the performance differences are examined on both GT200 and
Fermi. We achieved the best performance mostly at the thread
configuration of 32×8 for the Fermi GPU.

V. RESULTS
Due to the data dependency within the QR eigenvalue

algorithm, it is found that the first phase, i.e., the Hessenberg
reduction, is able to get significant performance improvement
through hardware acceleration technologies. Therefore, we
present the performance result of Hessenberg reduction on
different platforms in this section. In order to demonstrate the
benefit of FPGA and GPU implementations, we implemented
Alg. 1 on two CPUs as reference, i.e., Intel Itanium 2 (1.66
GHz) on the RASC RC100 platform and Intel Xeon E5520
on the Tesla C1060 platform.

A. Performance comparison
For comparison of acceleration over pure software based

implementations, we coded the Hessenberg reduction phase
in C++ on two software platforms.

The first platform is the RASC RC100 workstation with
Intel Itanium 2 at 1.66 GHz. The size of L1 cache and
L2 cache of the microprocessor is 16KB and 256KB [25],
respectively. The software implementation on Itanium 2 is a
sequential and direct implementation of Alg. 1. This sequential
implementation is handcoded in C++ and single-threaded.

The second platform is a dual-socket Intel Xeon (Nehalem)
system, as shown in Figure 5. The CPU is clocked at 2.26GHz
with 8MB shared L3 cache and 12GB DDR3 memory (total
24GB for the entire system). The theoretical peak double
precision floating-point performance is 36 GFLOP/S for each
CPU. We implemented both sequential and parallel versions on
Xeon. The sequential implementation is same to the one on
Itanium processor. The parallel version is parallelized using
OpenMP [26]. The critical computing intensive paths are
parallelized by multiple threads first then further vectorized
by the compiler utilizing the SSE units per core. These
optimizations are achieved by enabling compiler optimization
flags in GCC, such as -sse4.2 -mtune=core2. Furthermore,
in order to achieve better scalability on all eight cores of
both CPUs, we manually optimized our OpenMP code for
better data locality control and further applied numactl to
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Fig. 6. Performance comparison of the vector-based Hessen-
berg reduction.

bind threads to physical CPU cores to avoid the NUMA
penalty. Such an optimization significantly improves overall
performance on two CPUs for up to 60%.

Overall, the vector-based Hessenberg reduction has been
realized in 6 different implementations on three platforms as
follows.

• The FPGA implementation;
• The Tesla C1060 GPU implementation;
• The GTX 480 GPU implementation;
• The sequential software implementation on Itanium 2;
• The sequential software implementation on Xeon E5520;
• The parallel software implementation of OpenMP.

We had another implementation by using Intel MKL library,
which runs 8 threads on the two Xeon processors. However,
the performance of the Intel MKL parallel implementation
is close to the OpenMP implementation. Therefore, the per-
formance result of MKL implementation is not included in
this paper. The comparison among these 6 implementations
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is illustrated in Figure 6, which includes both computation
time and the speedup against the software implementation on
Itanium 2. The computation time on both FPGA and GPU
is the end-to-end time including data communication time
and data processing time on the coprocessors. The FPGA
configuration time is not counted, however.

From Figure 6(b), it can be found that the FPGA implemen-
tation is able to outperform the Itanium 2 by 20 folds. Both
Virtex-4 and Intel Itanium 2 were technologies around Year
2005, and the FPGA implementation has the big advantage
than the CPU when the device was just released to the market.
However, the performance of the FPGA implementation lags
behind the state-of-the-art microprocessor and the GPUs with
a big margin. The inferior performance of FPGA is mainly
due to three factors. (i) The FPGA device is running at
a very low frequency, i.e., 100 MHz. If the FPGA device
is running at the same speed as the microprocessor, their
performance will tie. (ii) The direct implementation of Alg. 1
is a sequential process due to the data dependency. Although
we have tried to parallelize the hardware implementation to
the extreme, its performance is easily surpassed by modern
multicore processors with improved design on cache and SSE
when dealing with applications such as Hessenberg reduction.
(iii) The 5 local memory banks on the current platform become
the limiting factor to increase the parallelism in the hardware
implementation. More memory banks are desired to achieve
higher parallelism on FPGA device.

The state-of-the-art microprocessor used in the experiments,
Intel Xeon processor, demonstrates a remarkable performance
improvement than the Itanium 2. For example, the sequential
implementation on Xeon outperforms the sequential imple-
mentation on Itanium 2 for 50 folds. Putting multiple cores in
a single processor further improves its performance, which is
contributed mainly by two factors. First, the SSE extension in
modern processor provides the vector processing capability,
which fits the computation pattern in the target application
very well. Second, the target application is a streaming ap-
plication in which the computation can be distributed onto
multiple cores to parallelize the data processing. Due to the
data distributing overhead, the benefit for using multiple cores
can be achieved only when the problem size is big enough,
e.g., the rank of the matrix reaches 150 in Fig 6(b).

It is evident that it will be beneficial to implement the
application on GPU as the matrix rank increases. The Tesla im-
plementation surpasses the sequential software implementation
on Xeon at rank 260 and then approaches the parallel software
implementation afterwards. Fermi consistently outperforms
GT200 for approximately 4×. Two factors mainly contribute
to the performance improvement on GPU architecture. The
first one is the massive parallel computing capability provided
by the hundreds of streaming processors. As the rank of the
matrix increases, the occupancy of the streaming processors
improves accordingly as well as the speedup. The second
factor is the very high bandwidth provided by the graphics
DDR memory. As shown in Table 3, the memory bandwidth
on GPU is 7 times of the memory bandwidth on CPU. The
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Fig. 7. Performance scalability of vector-based implementa-
tions of Hessenberg reduction.

high bandwidth is very beneficial when the data need to be
frequently accessed from the memory.

B. Scalability

In the previous test, we limit the matrix rank at 480 because
it is the biggest size the FPGA design can accommodate due
to the size of the off-chip memory. In the meantime, it is
clearly demonstrated that GPUs are capable of outperforming
multicore CPUs as the matrix rank increases. In order to com-
pletely show the performance potential of GPUs, we compare
them with the sequential and 8-thread x86 implementations
on the Xeon platform (shown in Figure 5) with the matrix
rank up to 4,096. By observing Figure 7, the implementation
on Tesla C1060 is generally 2 times faster than the 8-thread
Xeon implementation. The main reason has been described
as above. The GTX 480 GPU outperforms all other versions
consistently with a big margin. The Hessenberg reduction is
a computation-intensive as well as communication-intensive
problem. The abundant streaming processors and the high
memory bandwidth on the Fermi architecture evidently give
the advantage of GTX 480 compared with other technologies.

VI. CONCLUSION

Using FPGAs and GPUs as coprocessors to CPUs in
parallel computing has been demonstrated in the context of an
engineered material design, where the numerically intensive
components of the RCW algorithm were implemented on
these hardware acceleration technologies. The performance
speedup on both coprocessors compared with software
implementations on modern microprocessors are very
impressive, proving both platforms are very suitable in
scientific applications.
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