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Abstract─The Normalized Surface Magnetic 
Source (NSMS) model is applied to unexploded 
ordnance (UXO) discrimination data collected at 
Camp Sibert, AL, with the EM63 electromagnetic 
induction sensor. The NSMS is a fast and accurate 
numerical forward model that represents an 
object’s response using a set of equivalent 
magnetic dipoles distributed on a surrounding 
closed surface. As part of the discrimination 
process one must also determine the location and 
orientation of each buried target. This is achieved 
using a physics-based technique that assumes a 
target to be a dipole and extracts the location from 
the measured magnetic field vector and the scalar 
magnetic potential; the latter is reconstructed from 
field measurements by means of an auxiliary layer 
of magnetic charges. Once the object’s location is 
estimated, the measured magnetic field is matched 
to NSMS predictions to determine the time-
dependent amplitudes of the surface magnetic 
sources, which in turn can be used to generate 
classifying features. This paper shows the superior 
discrimination performance of the NSMS model. 
 
Index Terms─UXO, Camp Sibert tests, NSMS 
model, HAP method, discrimination, inversion. 

I. INTRODUCTION 
Unexploded ordnance (UXO) is a widespread, 

long-lasting, and deadly remnant of war and 
military practice that kills or maims hundreds of 
people worldwide each year. In the United States 
alone it is estimated that an area the size of the 
states of New Hampshire and Vermont put 
together—as many as 11 million acres of land—
may be tainted with UXO, and that the eventual 
cost of cleaning up the contaminated land will 
reach the hundreds of billions of dollars [1],[2]. 
This is not because detecting UXO is difficult: 
low-frequency electromagnetic induction (EMI) 
sensors, on which we concentrate here, can easily 
penetrate the ground and find buried metal, and so 
can other methods like magnetometry or ground-
penetrating radar. What makes the task of 
decontaminating UXO-polluted land so onerous 
and expensive is the inability of sensors to single 
out dangerous ordnance from the morass of 
innocuous items that usually surrounds them in the 
field; the latter can comprise smithereens from 
ordnance that did explode, high-metal-content 
geology, and anything else from nails to beer cans, 
all of which, in the absence of further information, 
must be treated as dangerous. The problem, then, 
consists of identifying hazardous items and 
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distinguishing them from clutter as reliably and 
quickly as possible. 

Much research is being presently conducted 
with the aim of making the UXO remediation 
process more efficient and economic. To support 
this effort by providing sound benchmarks, the 
Strategic Environmental Research and 
Development Program (SERDP) recently set up 
UXO discrimination blind tests at sites in Camp 
Sibert, a former U.S. Army facility near Gadsden, 
Alabama. Personnel from Sky Research, Inc. 
under the auspices of SERDP collected data at 
those test sites using the EM63, a time-domain 
EMI sensor produced by Geonics Ltd. [3]. The 
216 targets buried at the sites include unexploded 
 4. ′′2  mortars, mortar explosion byproducts like 
base plates and bent half-shells, smaller shrapnel, 
and unrelated metallic clutter. In this paper we use 
those data to demonstrate the discrimination 
performance of a physically complete, fast, 
accurate, robust, and clutter-tolerant inverse-
scattering approach called the Normalized Surface 
Magnetic Source (NSMS) model [4], which we 
present in Section II. 

The signal scattered by an object depends both 
on the intrinsic features of the target (which the 
NSMS can encapsulate) and on its location and 
orientation relative to the sensor. Thus an essential 
step of the discrimination process is determining 
those extrinsic, observation-dependent factors as 
accurately as possible for each target. This 
nonlinear problem is usually attempted 
simultaneously with the characterization, an 
approach that often results in ill-posed and 
computationally expensive optimizations that take 
time and may yield unreliable answers. Here we 
bypass that difficulty by employing the physics-
based field-potential (HAP) method [5], described 
in Section III, that pinpoints scatterers quickly and 
effectively. 

The NSMS model and the HAP method 
ultimately stem from similar considerations. 
Scattered magnetic fields in the EMI regime are 
due to eddy currents or magnetic dipoles induced 
(and in some cases realigned) by the sensor and 
distributed nonuniformly inside the scatterers. 
Most of these sources tend to concentrate at some 
particular points, the so-called “scattered field 
singularities” (SFS); the study of the mathematical 
and physical properties of these singularities is 
part of the discipline known in the literature as 

“catastrophe theory” [6]. Recent work shows that 
under certain conditions the entire scatterer can be 
replaced with responding elementary sources 
placed at the SFS [7],[8]. 

In particular, the NSMS model replaces the 
scatterer—the UXO or piece of clutter, in this 
case—with a surrounding spheroid on which a set 
of radially oriented dipoles is distributed. The 
strengths of these dipoles are determined as those 
that best reproduce actual measurements; the 
composite dipole moment—here referred to as the 
“total NSMS”—varies significantly for different 
targets but is remarkably consistent for different 
specimens of the same object. In turn, the HAP 
technique assumes that the whole scatterer is a 
point dipole located at some SFS and finds its 
location and orientation by means of analytic 
expressions involving the dipole field and its 
associated scalar magnetic potential; to construct 
the latter from the former one distributes 
elementary sources on an auxiliary layer placed at 
a location intermediate between the sensor and the 
object and again finds the dipole moments by 
fitting measured data. 

When combined, the two methods result in a 
powerful and efficient discrimination method for 
UXO. The precise location and orientation 
estimates given by the HAP allow an almost 
instantaneous determination of the time-dependent 
total NSMS. This can then be distilled further 
using an empirical decay law [9] whose fitting 
parameters can be mixed into discriminating 
features that tend to group in well-separated tight 
clusters, resulting in clear-cut classification. In the 
Camp Sibert blind test only one anomaly out of 
216 was not identified correctly. In Section IV we 
discuss the procedure followed and the results 
obtained in this study, and in Section V we 
conclude. 

 
II. THE NORMALIZED SURFACE 

SOURCE MODEL 
The NSMS can be thought of as a 

generalization of the infinitesimal dipole model 
[9],[10],[11], with which it coincides in the limit. 
The dipole model postulates that for any given 
object it is possible to find a set of three 
orthonormal “body” axes such that a uniform 
primary field impinging along any of those 
directions induces a magnetization—and hence a 
dipole moment—parallel and linearly proportional 
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to it. A primary field   Hpr  pointing along an 
arbitrary direction thus creates a dipole moment 

  m = M ⋅Hpr , where the polarizability tensor M  
projects   Hpr  onto the body system, finds the 
magnetization components there—this being the 
only step that depends on the object and not on the 
geometry—and synthesizes the dipole moment 
back in the global frame. The point dipole model 
is conceptually simple, fast, and reasonably 
powerful, and for that reason has been frequently 
used in discrimination studies [9],[12],[13]. 
However, its limitations become apparent when 
the target to be identified is heterogeneous, and 
thus composed of two or more mutually 
interacting sections, or when, as is usually the case 
in EMI measurements, the primary field 
established by the sensor varies appreciably over 
the dimensions of the target and strikes each 
region with a different intensity and direction. 
These problems can be addressed by substituting 
the single point dipole with an assembly of 
responding sources. 

In the particular version of the NSMS used for 
the Camp Sibert test we distribute dipoles on a 
prolate spheroidal surface that surrounds the object 
of interest. By choosing a spheroid we 
simultaneously exploit the realism granted by its 
orientable elongated shape and the simplicity 
afforded by its azimuthal symmetry—a quality 
spheroids share with most UXO. We divide the 
spheroid  S  into subsurfaces (either patches or 
belts) and assign 

 
    
Hsc (r) = M ( ′s )

4πR ′s
3

3( öξ ′s ⋅R ′s )R ′s

R ′s
2 − öξ ′s

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

d ′s
S�∫ ,  (1) 

where   R ′s = r − r ′s  is a vector that points from the 
location   r ′s  of the  ′s -th infinitesimal patch on the 

spheroid to the observation point  r  and öξ ′s  is the 
unit vector normal to the patch, which is most 
easily found in prolate spheroidal coordinates. All 
of these quantities clearly depend on the location 
and orientation of the spheroid relative to the 
sensor. The dipole directions are fixed by their 
locations on the spheroid, so to factor out the 
geometric particulars we set 

    M ( ′s ) = Ω( ′s ) [öξ( ′s ) ⋅Hpr ( ′s )],  (2) 

which defines a new normalized surface 
polarization distribution Ω( ′s ) . Such a distribution 
can be generated by spreading virtual positive 
magnetic charge over the exterior of an 
infinitesimally thin spheroidal shell and negative 
charge on its inner surface, resulting in a double 
layer. This configuration introduces the proper 
discontinuities in the tangential components of the 
magnetic flux density vector  B  at the boundary 
between two media but does not affect its normal 
component, keeping B  divergence-free and the 
model consistent with the absence of free 
magnetic monopoles in nature. 

By choosing a suitable quadrature scheme it is 
possible to transform Eq. (1) into the matrix-vector 
product Hsc = Z ⋅Ω . Each column of the scattering 
matrix Z  corresponds to a different subsurface, 
and each row to a measurement point at which 
data are collected. The amplitude vector Ω  can be 
determined directly, and with great speed and 
accuracy, by minimizing in a least-squares sense 
the difference between measured data and the 
predictions of Eq. (1) at a sufficient set of points 
for a known object-sensor configuration: 

 min
Ω

1
2 Z ⋅½ −Hmeas( )2 , (3) 

whose solution is the normal equation 

 ½ = [ZT ⋅Z]−1[ZT ⋅Hmeas ] . (4) 

Once Ω  is found one can define a “total” or 
“average” polarizability by integrating over the 
whole spheroid. The resulting quantity 

 Q = Ω( ′s ) d ′s
S�∫  (5) 

is a global magnetic capacitance of sorts. Different 
studies [4] have shown that, within reasonable 
limits, Q  for a given object is invariant with 
respect to the constructs used for its determination: 
spheroid size and aspect ratio, measurement grid, 
object location or orientation, primary field, etc. It 
is thus intrinsic to the object and can be used, on 
its own or combined with other quantities, in 
discrimination processing, either within a 
“genuine” inversion procedure that uses Q  itself 
as a discriminant or through a “pattern matching” 
method that compares measured fields to those 
stored in a library of known objects and 
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determines which known UXO has the catalogued 
source distribution that best reproduces the signal 
received by the survey sensor. Used in this way, 
the NSMS system is a faster forward model than 
other physically motivated models such as the 
standardized excitation approach (SEA) [14],[15] 
or the generalized SEA described in [16],[17]. 

The actual signal picked up by the sensor is 
more complicated than Eq. (1), since, in 
observance of Faraday’s Law, it is the negative of 
the time derivative of the magnetic flux through 
the receiver coil. Thus it is necessary to perform 
an additional quadrature to incorporate the surface 
integral over the coil (and have  Q  absorb a minus 
sign). A deeper issue has to do with the time 
dependence of  Q . Equations (1)–(4) are evaluated 
separately at each time gate and formally yield a 
“time-dependent” distribution   Q(t) , even though 
in rigor the transient response must take into 
account the complete history of excitation and 
involve both the impulse response of the target and 
the waveform of the sensor. Still, it is reasonable 
to determine and use the amplitude   Q(t) , even 
though it has no actual physical reality, because its 
manifestation is unique. Moreover, we are 
interested only in the field outside the targets, 
where it can be assumed that electromagnetic 
phenomena occur instantaneously. A thorough 
study of this problem, including detailed 
calculations of full time responses, can be found in 
Ref. [18]. 

 
III. A METHOD TO ESTIMATE THE 
LOCATION OF A BURIED OBJECT 
Consider a point dipole located at rd  with a 

moment  m  that in general may be dependent on 
frequency or time. In the magnetoquasistatic 
regime that concerns us the dipole generates at the 
observation point  r  a field 

 
   
H(r) = 1

4πR3

3(m ⋅R)R
R2 −m

⎡

⎣
⎢

⎤

⎦
⎥ , (6) 

where   R = r − rd , which in turn can be derived 
from the scalar potential 

 
   
ψ (r) = m ⋅R

4πR3 . (7) 

A simple algebraic manipulation lets us find rd  in 
terms of H  and ψ : take the dot product of H  
and R  and use ψ  to show that 

 H ⋅R = 2
m ⋅R
4πR3

= 2ψ , (8) 

which can be cast as 

 H ⋅rd = −2ψ +H ⋅r . (9) 

Given N  observation points it is possible to 
find a least-squares estimate of the dipole location 
using 

 

Hx ,1 H y ,1 Hz ,1

Hx ,2 H y ,2 Hz ,2

M

Hx ,N H y ,N Hz ,N

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

xd

yd

zd

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

−2ψ 1 +H1 ⋅r1

−2ψ 2 +H2 ⋅r2

M

−2ψ N +HN ⋅rN

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

(10) 

since at every point i  we know the location ri  of 
the sensor and the value Hi  of the vector magnetic 
field. The only quantity not readily available is the 
scalar potential, but that can be reconstructed 
using a method similar to that from the preceding 
section. We assume that the scattered magnetic 
field is produced by a set of magnetic sources—
charges, in this case—placed on a fictitious 
surface located just below the measurement points. 
The field is then 

 H(ri ) =
q( ′s )
4π

ri − r ′s

ri − r ′s

3∫ d ′s , (11) 

to which corresponds a scalar potential 

 ψ (ri ) =
q( ′s )

4π ri − r ′s
∫ d ′s . (12) 

The positions r ′s  of the sources are fixed and 
known by construction, so it remains to determine 
the charges q( ′s ) . This is again achieved by 
minimizing the difference between model 
predictions and collected data   Hmeas  at a set of 
known points. We use a quadrature scheme to turn 
Eq. (11) into a matrix-vector product and then 
determine 
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min
q

1
2

Zx

Z y

Zz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅q −
Hx

meas

H y
meas

Hz
meas

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

2

, (13) 

where each matrix row corresponds to a different 
measurement point and each column to a 
subsurface of the underground virtual source layer. 
This method and its adaptation to monostatic 
sensors (like that used for the Camp Sibert test) 
are discussed in detail in Ref. [5]. 

 

IV. NUMERICAL RESULTS 
The Camp Sibert blind-test data was collected 

over 216 cells, each of which was a square of side 
5 m and contained one anomaly. There were three 
main kinds of targets: 4. ′′2  UXO, base plates, and 
partial mortars (Fig. 1), to which were added 
smaller shrapnel and non-UXO related scrap. We 
were given a set of calibration data for each type 
of object, which we used to build a catalog of 
expected total NSMS values. 

The Geonics EM63 collects data over 26 time 
channels, with the first gate centered at 180 μs and 
the last at 25 ms. Approximately 700 data points 
were taken per time channel at each cell; the 
measurement locations for a typical cell (which in 
this particular case contained a mortar target) are 
shown as points in Fig. 2. The figure shows the 
scattered field values measured by the sensor (left 
column) and reconstructed by the combined 
procedure from the previous sections (right 
column), along with the absolute value of the 
difference between the two. The top row 
corresponds to the very first time gate and the 
bottom row depicts the 20th, centered at 7.65 ms. 
We see that the predictions agree well with the 
actual values. Our next task is to see whether these 
reasonable predictions are realizations of a sound 
model. 

Initially we solved simultaneously for the total 
NSMS and the location and orientation of each 
anomaly using a Levenberg-Marquardt nonlinear 
least-squares optimization [19]. The results of that 
procedure are presented elsewhere [20]. As seen in 
that reference, it was difficult to categorize each 
target reliably because there tended to be a large 
uncertainty in the location. (To save time we 
performed the Levenberg-Marquardt search only 
once per target, so many of those optimizations 
may have reported finding a local minimum.) We 
obtained much better results by finding the 
locations and orientations of the targets using the 
HAP method and then characterizing the located 
objects using a 3D NSMS code. The inverted total 
NSMS strengths for all anomalies appear on 
Fig. 3. The figure also separates the curves 
corresponding to each of the major kinds of targets 
sought. 

The total NSMS depends on the size, the 
geometry, and the material composition of the 
object it represents. Early time gates bring out the 
high-frequency response to the shutdown of the 

Fig. 1. Example items buried in the ground at the 
Camp Sibert plots: a) 4.2-inch mortar, b) base 
plate, c) partial mortar. 

a

b

c
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exciting field; since the skin depth   δ ∝ f −1/2 , the 
eddy currents in this range are superficial, and a 
large NSMS amplitude at early times correlates 
with large objects whose surface stretches wide. 
At late times, where the eddy currents have 
diffused completely into the object and low-
frequency harmonics dominate, the EMI response 
relates to the metal content (volume) of the target. 
Thus a smaller but compact object like the base 
plate of Fig. 1(c) has a relatively weak early 
response that dies down slowly, while a large but 
thin, essentially hollow object like the partial 
mortar (bent half-shell) of Fig. 1(d) has an initially 
strong response that decays quickly. The 
unexploded  4. ′′2  mortar, being large and tightly 
packed, has a substantial early response that 
persists for a long time. 

The previous considerations may be put on a 
more quantitative footing through discrimination 
features that summarize these characteristics 

(initial amplitude, time constant, etc.) for the 
different NSMS curves. To that end we employ an 
empirical power-law/exponential decay expression 
first proposed by Pasion and Oldenburg [9], 

 Q(t) = kt−βe−γ t , (14) 

where t  is the time, k , β , and γ  are fitting 
parameters, and Q(t)  is the total NSMS from 
Fig. 3. After investigating different combinations 
of k , β , and γ  we found that the ratio of Q  at 
the 15th time channel to  Q  at the first time 
channel, which involves a fixed combination of β  
and γ , showed good classification ability when 
plotted against k . Figure 4 depicts   Q(t15 ) / Q(t1)  
versus k  for all items. The results show a clear 
and robust clustering in this feature space that can 
result in dependable classification. In particular, 
we see that the values for the  4. ′′2  mortars are 

 Actual (mV) Predicted (mV) Misfit (mV) 
1st time channel  1st time channel  

20th time channel  20th time channel  

1st time channel  

20th time channel  

Fig. 2. EM63 data sets: near field distributions for a typical case, measured (left column), predicted 
(middle), and misfit (right). The white dots show the measurement points on the 5 m-by-5 m square plot. 
The first time channel (top row) is taken 80 μs after shutdown; the 20th (bottom) corresponds to 7.65 ms. 
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very well grouped and noticeably distinct from 
those of the base plates and the partial mortars. We 
knew the ground truth for 66 of the anomalies and 
used that information to make predictions for the 
other 150. Our combined NSMS/HAP method 
correctly identified all UXO and had only one 
false alarm. The resulting Receiver Operating 
Characteristic (ROC) curve, omitted here, is an 
almost perfect square. 

The combination of   Q(t15 ) / Q(t1)  and k  is a 
solid discriminator but not the only one available. 
It is possible to study directly the clustering of k , 
β , and γ  in a 3D feature space or perform a 
similar analysis for the full   Q(t) . We are in the 
process of implementing classification algorithms 

that do just that and will present the results in 
forthcoming reports. 
 

V. CONCLUSION 
In this paper we applied the NSMS model to the 

EM-63 Camp Sibert discrimination data sets. First 
the locations of the objects were inverted for by 
means of a very efficient and accurate dipole-
inspired method; subsequently each anomaly was 
characterized at each time channel through its total 
NSMS strength. Classification features were 
selected and extracted for each object using the 
Pasion-Oldenburg decay law. Our study reveals 
that the ratio of an object’s late response to its 
early response provides a good discrimination 
parameter when plotted against the Pasion-

Fig. 3. Inverted total NSMS amplitudes for all anomalies (a) and classification results. The UXO (red, b) 
have a large spatial extent and thus a large initial amplitude, as do the partial mortars (bent hollow 
shells) (magenta, d). They are also packed tight and hence have a high metal concentration, just like the 
base plates (gray, c), resulting in a relatively slow time decay. The other objects are much smaller. 

a b 

d c
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Oldenburg amplitude. These results, and those of 
other tests [21],[22], show that the NSMS/HAP 
combined procedure is capable of correctly 
singling out UXO from among munitions-related 
debris and other clutter, both natural and artificial, 
that always plagues former battlefields and 
proving grounds. It is thus a strong candidate to 
help solve the serious international problem of 
UXO proliferation. 
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