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Abstract

The Finite Element Method with second order
Absorbing Boundary Condition is a recently
developed computational technique that finds
use in antenna design and Electromagnetic
Compatibility simulation. To determine the
accuracy of this new procedure, the problem of

aperture radiation was studied. The near zone

and aperture fields of a waveguide antenna
computed using the Finite Element Method are
compared with published data and results
found using other simulation techniques.
These comparisons show that the new method
is accurate even when the ABC boundary
conforms to the problem geometry and is

placed as near as A21 to the aperture.
Introduction

A central problem in antenna design and
Electromagnetic Compatibility (EMC) is
computing the radiation from apertures.
Apertures represent the key element in many
radiating structures including open ended
waveguides, flared horns and reflector
antennas. In EMC, openings in system
cabinets provide a major source of unwanted
radiation. This latter application has become
increasingly important as the European
Economic Community and the FCC tighten
their EMC compliance regulations.

Aperture problems have been studied in
the past [1 and 2]. Typically the Method of
Moments (MOM) is used to solve for the fields
in the aperture assuming that the aperture is cut
in an infinite ground plane. While this
provides an efficient method of solution, the
infinite ground plane assumption limits its
utility. The resulting model is appropriate for
analyzing an array of aperture antennas, but not

1 Xingchao Yuan is currently employed at Cadence
Design Systems, Inc., Chelmsford, MA 01824.
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for computing the radiation from finite sized
enclosures. Real world systems are finite in
size and often have irregular openings and
other objects, both metal and dielectric, that
affect the radiation. For such problems a
hybrid approach can be used [3 and 4].
Unfortunately these methods are only
appropriate for the specific geometries
considered. To solve more general problems, a
general purpose computer simulation tool is
needed.

A technique that can easily handle
complex geometries and provides a general
purpose simulation procedure is the Finite
Element Method (FEM). The FEM has been
used successfully in the past to modei closed
region problems. In the FEM, the solution
space is broken into small elements and the
field in each element is calculated directly. The
resulting discretization is usually referred to as
the finite element mesh. For open region
radiation problems, the solution space must be
bounded. One way to accomplish this is to

place a 377 Q2 impedance boundary far from the
radiating source. However, this approach
generates a very large solution region and
requires correspondingly large solution times.
Recently a new Absorbing Boundary Condition
(ABC) has been developed [5 and 10] that can
be used to terminate the FEM mesh at
boundaries very close to the radiating structure.
The smaller solution region with this new
absorbing boundary makes the resulting
computation more efficient. However, the
following question arises: How close can the
new ABC be placed to the radiating structure
without significant loss of accuracy? To
answer this question, a study was undertaken
to compare the results from FEM simulations
with measured data available from the literature
and with data found by using other solution
techniques.

While the radiation from an opening in a
system cabinet is an important problem, the



available data is limited. Therefore, the
radiation from a waveguide antenna was
chosen as the test case for this study. Using a
waveguide antenna, it will be shown that this
new ABC can be made to conform to the
problem geometry and can be placed as close as

A/2x from the aperture for such geometries.
Placing the ABC this close to the radiating
source keeps the FEM mesh small and results
in an efficient solution.

Accuracy Statement

For the case presented here where the ABC

is at A/2x the magnitude of the near zone
electric field along the aperture center line is
accurate to within = 0.5 dB when compared to
measured data. Also the calculation of the
amplitude of the dominant mode in the aperture
of an X band waveguide for the same ABC
spacing is accurate to within 2 % in magnitude
and 2° in phase when compared to a method of
moments calculation. These numbers were
found to be typical for the aperture radiation
problems considered here. The apertures
considered here have a maximum dimension

that is on the order of 1 A. As an example of
the resources required for a solution: for the
simulation of the unflanged waveguide with the

ABC at A/2r (data presented in Figure 3) the
run time for 3 solution passes was less than
one hour on an HP 735 workstation with a 99
MHz. processor and 400 MB memory.

Overview of the FEM

To understand the results presented
here it is useful to first review the basics of the
FEM. See Reference 7 for more complete
details on the FEM. In the FEM, the solution
space is broken into small regions called finite
elements. The elements used in
electromagnetics are often tetrahedral as
illustrated in Figure 1. This element has the
advantage of being both flexible for modeling
shapes and allowing closed form integrations.
Since the solution space is split into small
elements it is very easy to model geometries
that contain different materials. This is most
helpful when simulating printed circuit
geometries.
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The electric field in each element is
approximated by using the tangential
components along each edge as shown in
Figure 1. This choice of approximation
functions eliminates the spurious modes that
can cause problems in finite element
simulations [8]. The tangential electric fields
are approximated by polynomials that contain
unknown weighting coefficients, E;. The

electric field must satisfy the vector wave
equation:

VxVxE = k2 E (1)
The vector wave equation leads to the
following variational principle:

HE) = | () a5 -2 I Efas o

The polynomial approximation
functions are substituted into (2) and the
resulting set of equations are minimized with
respect to the unknown coefficients by setting
the OF/0E; equal to O for all i. While the

resulting matrix is generally large, it is sparse.
This matrix equation is solved to find the
unknowns, Ei'

In FEM simulation, the size, shape and
location of the elements in the mesh is
important to the accuracy of the solution. To
reduce the possibility of a poor mesh causing
inaccuracies, Delaunay tessellation and adaptive
mesh refinement [16] was employed. In
adaptive mesh refinement, the solution is first
computed with a coarse initial mesh. The
approximate solution is then substituted into the
vector wave equation (1) to determine the error
in each element. Next the elements that contain
the largest errors are refined. The result is that
the elements in those parts of the problem
where the errors are the largest are reduced in
size. The entire procedure is repeated until the
desired accuracy is attained. In the CAE tool
used here the user controls the definition of the
initial mesh. The user can specify a seed value
for various surfaces in the model. This seed
value is the spacing of additional points added
to the original problem description on a
specified surface. These seed points become
the vertices of the tetrahedral finite elements.



The Second Order ABC

Absorbing boundary conditions
(ABCs) are of two general types. The first is
the one derived by Bayliss and Turkel [9] in
scalar form and then by Peterson [5] and by
Webb and Kanellopoulos {10] in vector form.
The basis of the derivation of this ABC is the
far field expansion or Wilcox expansion [11].
The first term in this expansion provides a 377

{2 impedance boundary that must be placed
relatively far from radiating sources. The
second type of ABC was derived by Engquist
and Majda [12] in scalar form and by Sun and
Balanis [13] in vector form. This ABC is
derived by splitting the operator into two first-
order operators and then approximating these
first-order operators. This allows waves to
travel in one direction only; hence, they are
often called a one-way ABCs.

In this paper the second-order ABC
presented in References [5 and 10] is used. It
should be noted that although these ABCs are
derived in the reference, these papers are purely
theoretical and do not provide numerical
examples of its accuracy. The purpose of this
paper is to provide such examples.

This ABC is computationally efficient
for the following reasons. First, it includes
higher order terms compared to the first order
ABC. Second, the ABC may be applied on a
conformal boundary because it absorbs the
outgoing wave on a piecewise basis. Finally,
the finite element shape functions themselves
are second order so that the ABC boundary
may be placed very close to the source of the
radiation.

The above discussion indicates that the new
ABC behaves very much like the absorber used
in an anechoic chamber. Therefore, one would
expect that the second order ABC can be placed
very close to the radiating structure and can be
made to conform to the geometry. From
antenna theory it can be shown that the near
zone of an antenna can be broken into two
separate regions: the reactive near zone and the
radiating near zone regions [14]. The reactive
near zone is the region closest to the geometry
where the reactive fields are present. It is the
fields in this region that contribute to the
imaginary component of the input impedance.
Since these are reactive fields one does not
want to place an absorber in this region else the
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amount of energy stored is affected. On the
other hand, this should not be a concern in the
radiating near zone. Therefore, one should be
able to place the ABC in the radiating near zone
of the geometry. Reference [14] states that the
boundary between the reactive and radiating

near zones may be as small as A/2x from the

antenna. One would expect then that the lower
limit on the ABC placement would be on the

order of A/2m.
Results for an Unflanged Waveguide

The computed data presented here was
solved using an initial mesh that was seeded

with mesh points every A/10 over the aperture
opening, over the input port and on the ABC
boundary. Adaptive mesh refinement was
applied twice to these initial values to perform a
total of three solution passes. This was
sufficient to ensure that the change in the value
of the reflection coefficient from pass 2 to pass
3 was less than 0.02.

A problem with much of the waveguide
antenna simulations presented in the literature is
that the aperture plane is assumed to be an
infinite ground plane corresponding to a
waveguide with an infinite flange. While this
assumption reduces the complexity of the
mathematical model, it does not reflect the
situation in the real world. To determine the
optimum distance for placement of the ABC, it
is important to simulate a geometry that does
not have an infinite flange. The authors of
Reference 15 considered such a problem: they-
studied the radiation from an unflanged
WR3200 rectangular waveguide. This is the
type of antenna used in large anechoic
chambers for susceptibility testing. For the case
considered in Reference 15 the antenna has a
net input power of 44.8 watts at a frequency of
275 MHz. The FEM simulation model that was
used is shown in Figure 2. This is a simple
unflanged waveguide with an input port at one
end. The waveguide is enclosed in a
rectangular box on which is placed the ABC.
The spacing D was varied and the data
compared with the measured values. The
results are shown in Figure 3. The data
presented is the magnitude of the electric field
along the x=y=0 line for a variety of values of
z in the antenna’s near zone. At the frequency



of operation the field points for the smaller

spacings are less than 1 A from the opening. It
should be noted that these field points are
outside of the FEM mesh for the cases
presented here. The values of the fields
determined on the boundary are used to
calculate the fields at points outside of the mesh
(see [6] for details). From the data shown in

Figure 3, it can be seen that for D = A/4 and

A/2r the differences between measured and
computed results are less than + 0.5 dB. The

A/10 case, though, is not as accurate. These
results are an additional 0.5 dB smaller than the

A/2m data when compared to the measured. In
fact a case could be made that at this spacing
the results are still very good. The FEM
meshes for the 3 spacings had approximately

the same number of unknowns (within =10%
of each other). The main difference between
these three simulations was the size of the
tetrahedra, not a significant increase in the
number.

Another test of the solution procedure
was to calculate the gain of the antenna using
the far zone fields determined by the FEM/ABC
approach. The gain for this antenna calculated
using equation (2) in Reference 15 is 6.9 dB
and the gain calculated in the simulation with

D=A/2n is 6.5 dB. While the gain equation
given in Reference 15 is approximate, it

nevertheless indicates that a D=A/2% spacing
can be used to accurately model this aperture
problem. Thus, the ABC can be made to
conform to the shape of the geometry and can

be placed as close as A/2% from the aperture
with accurate results for these geometries.

Using D=A/4 for the spacing does not
significantly increase the accuracy of the results
but does require a small increase in mesh size.

As a final note, the data for the A2x

and A/4 cases appeared to converge to accurate
values for the reflection coefficient after only
one adaptive mesh refinement, but they were
run for a second mesh refinement to be
consistent with the other case.
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The Aperture Fields for Flanged
Waveguide Antennas

As stated in the introduction, the
radiation from apertures has been studied in the
past using the method of moments (MOM).
Thus, the results from a MOM solution can
also be used to verify the FEM simulations.
Before discussing the specifics of this
approach, it should be noted that this MOM
procedure is designed to analyze waveguide
antennas with infinite flanges only and it is not
a general purpose CAE tool. In this
simulation, the aperture plane is assumed to be
an infinite ground plane and the aperture is
closed using the equivalence principle.
Equivalent magnetic currents are placed on
either side of the short. These magnetic
currents are approximated by a finite weighted
sum of entire domain basis functions. The
unknown weighting coefficients are determined
using a Galerkin procedure. Vector potential
modal functions were used as basis functions.
The field approximation for the aperture shown
in Figure 4 is as follows {2]:

E;= nz [Cnm €y,nm ¥ +Dpm €x,nm 2] 3
.m

where:

_1IE0nEOm s (TX mmy
€y,nm = b sm( a )cos( b )
e =4/ n>gm sin{-——mny)co Ry

X.Am b S( a )

and where £qgy is Neumann's number. Since

the MOM simulation assumes an infinite
flange, a small ground plane was placed around
the aperture in the FEM models. The ground

plane extends A/4 from each edge of the
aperture in the +x and +y directions. The ABC

is rectangular in shape. It is located at D = A/2n
from the aperture and from the edges of the
ground. The apertures and the ABC were
seeded in the same way as before and a total of
2 passes were run for all of the simulations in
this section.

Due to the orthogonality of the basis
functions of (4), it is a simple task to calculate
the coefficients Cp,, and D, from the FEM
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data. To compute C,, or Dy, the dot
product of the fields in the aperture are taken
with ey oY for Cn-m.or with ey nm* for
Dy, and the result is integrated numerically

over the aperture. Consider the data presented
in Figures 5 and 6. The magnitude and phase
of the first 4 modes in an X band waveguide
operated at 10 GHz are shown. It was found
previously that these four modes are sufficient
to accurately model the aperture field in this
antenna [2]. As stated previously, the FEM
and MOM data for the dominant mode are
within 2% in the magnitude and 2 ° in phase.
To verify that the size of the aperture
does not significantly affect the results or
require a larger ABC spacing, consider the data
shown in Figure 7. This is for a waveguide of
twice the dimensions as an X-Band waveguide
(a=1.8" and b=0.8"). It is operated at 10
GHz., making this antenna twice as large
electrically as the one simulated previously.
For this case the first 6 modes in the aperture
are compared. The ABC was again rectangular

and was spaced A/2x from the aperture and the
edges of the ground. In this case there is also
excellent agreement between the two sets of
data, the dominant mode amplitudes are
different by less than 3%.

As a final test, consider the data
presented in Figure 8. For this case, there are
two X band waveguide fed apertures (same
dimensions as was used for Figures 5 and 6} in
the ground plane. The geometry is shown in
Figure 8a. The apertures are spaced 0.6"
apart. One is driven and the other is connected
to a matched load. Due to mutual coupling
between the two aperture antennas, there is a
non-zero field in the aperture of the undriven
guide. The modal amplitudes of the fields in
both apertures are shown in Figure 8. The

ground plane again extends A/4 beyond the
apertures and the ABC spacing is A/2%.

Conclusion

From the data presented here it is concluded
that the new second order ABCs can be used
very effectively with the finite element method
to model aperture radiation problems. The new
ABCs can be shaped to conform to the problem

geometry and can be placed as close as A/2%
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from the aperture for accurate simulation.
Since the finite element method is well suited to
modeling real-life structures such as finite
flanges and variations in enclosure shapes, it
provides a new, powerful tool to analyze
radiation problems efficiently.

It should be noted that these results are
valid for the types of geometries presented
here. It is possible that a complicated radiating
geometry can be found where the reactive near
zone ends at a distance that is greater than

A/2x. In that case, the ABC should be spaced
at least that distance from the geometry for best
results.
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Figure 1 A tetrahedral showing the electric field components of the tangential vector finite element.
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Figure 2 FEM simulation mode! of the unflanged rectangular waveguide antenna.
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Figure 3 Magnitude of the near zone electric field along the center axis of the aperture. The values
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MOM simulations. For the X band waveguide used here: a=0.9" and b=0.4".

21



1.0

0.8 1

0.6

Magnitude

0.4

0.2 -

0
{8

Mode

Figure 5 Magnitude of the modal amplitudes for a flanged X band waveguide antenna.

Figure 6

0

—30'- U

w[]
O

Phase (°)
3
1

-120 -

0 moMm
-150 & FEM

-180 T Y T
Ci0 cl2 C30 DI2

Mode

Phase of the modal amplitudes for a flanged X band waveguide.

22



Magnitude

1.2
. 0O mMoM
1.0 - O m FEM
0.8 4
0.6 -
0.4 -
0.2 7 O
-
0.0 T T T ﬁ : L'l-' m]
C10 Cl1z2 C30 Cc32 Di2 D32
Mode

Figure 7 Magnitude of the modal amplitudes for a flanged waveguide antenna that is twice as large
as a standard X band waveguide.
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Figure 8 (a) Two aperture geometry. (b) Magnitude of the modal amplitudes for the case ofaX
band waveguides with d=0.6". The data on the left is for the driven guide, and the data on the right

is for the undriven guide.
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