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Abstract— We present a full-wave, high-performance,
numerical scheme for the analysis of planar microstrip
circuits which is based on an efficient electromagnetic
formulation of the field problem and on the bandwidth
reduction of the discretized sparse matrix.

The above mentioned electromagnetic efficiency is at-
tained by considering a Mixed Potential Integral Equa-
tion (MPIE) with the kernel expressed by closed-form
spatial-domain Green’s functions; as a consequence,
the reaction integrals are evaluated by using just one-
dimensional numerical integration over a finite spatial do-
main. Moment method discretization of the MPIE leads
to the corresponding matrix problem.

The accurate analysis of the matrix properties shows
that a sparsity of 70-85 % in the discretized linear system
can be routinely enforced without significantly altering
the solution accuracy.

A new scheme for the sparse matrix bandwidth reduc-
tion, particularly tailored for electromagnetic problems,
can be therefore introduced, leading to considerable re-
ductions of the simulation time. Results are presented
demonstrating that the use of a bandwidth reduction
strategy coupled with efficient problem-matched Green’s
functions allows as to obtain speed-ups in simulation time
of more than one order of magnitude with respect to stan-
dard state-of-the-art implementations.

I. INTRODUCTION

The efficient and rigorous analysis of microstrip cir-
cuits, including patch antennas and printed dipoles, re-
quires the use of appropriate Green’s function represen-
tation, adequate choice of basis functions for field ex-
pressions, and, last but not least, efficient strategies for
the solution of the linear system resulting from the in-
tegral equation discretization.

Recently, by means of an ingenious device, a novel ap-
proach has been developed [1] for obtaining closed-form
expressions for the spatial domain Green'’s functions cor-
responding to the vector and scalar potentials associated
with a horizontal electric dipole located over a tick sub-
strate. The technique has been furtherly extended in
[2], [3] and leads to substantial savings of computation
time when analizing planar microstrip configurations by
variational techniques, such as the method of Moments
(MoM). In this work we have therefore used the lat-
ter Green’s functions, hence significantly reducing the
amount of time necessary for the impedance matrix fill-
ing.

Concerning the choice of suitable basis functions, al-

though it has been shown in several occasions that
the inclusion of the appropriate edge singularity sig-
nificantly enhances convergence properties [4], in order
to keep the geometries as flexible as possible, standard
roof-top expansions have been used.

However, the suitable selection of problem-matched
Green'’s functions and therefore the efficient computa-
tion of the impedance matrix, although of primary rel-
evance from the electromagnetic viewpoint, is only a
part of the procedure necessary in order to solve the
field-problem in microstrip stuctures.

II. THE ELECTRIC FIELD MIXED POTENTIAL
INTEGRAL EQUATION FOR MICROSTRIP
STRUCTURES

A. MPIE Solution with the MoM and Closed Form
Green’s Functions

We consider N-port planar circuits, similar to that
sketched in Fig. 1, with infinite transverse dimensions
for both the dielectric and the ground plane; the metal-
ization thickness is assumed negligeable.

In order to achieve improved convergence properties,
we select Mixed Potential Integral Equations (MPIE)
[5], [6], [7], which are solved by considering closed-form
Green’s functions in the spatial domain and by using
the method of moments (MoM). The relative electric
field integral equation is derived from the Leontovich
boundary condition as:

n x [E® + E°] = Zg[n x Jg] (1)

where E® and ES denote respectively the excitation
and scattered electric field, and Zs and Js denote the
surface impedance and electric current density respec-
tively.

The electric field is written as a function of the vector
potential A and the scalar potential ¢, which satisfy the
Helmholtz vector and scalar equations, respectively:

E = —jwA — V¢ ()

By introducing the Green’s functions GA and G for
the surface electric current density Js and for the sur-
face electric charge density gs, respectively, a Fredholm
integral equation of the first kind is obtained, solvable
by the MoM after suitable Green’s function evaluation.

1054-4887 © 1998 ACES



198

Spatial domain mixed potential Green's functions for
a layered medium are expressed by Sommerfeld integrals
[8] whose integrands are slowly decaying obscillating
functions, hence the calculation is very time-consuming.
A possible approach to circumvent this problem is the
quasi-dynamic image model [9], which is not accurate
enough when surface and leaky wave effects must be ac-
counted for [10]. An ingenious device to evaluate the
above mentioned Green’s functions in closed form was
first suggested in [1] for single-layer problems, and ex-
tended more recently to multilayer structures [2], [3].
The latter is adopted in this work.

The integral equations are solved using the Galerkin’s
MoM, i.e. by selecting the same functions for tests and
exapnsion [11]. This way, a linear system of size NV is
derived from the MPIE:

sz Z::y Ia: _ ‘/z (3)
Zyz  Zyy Iy | — | Vy
The entry Z;; in the impedance matrix represents the
tangential electric field generated by the j-th basis func-
tion and weighted by the i-th test one. This entry is
expressed by a four-fold integral, in the spatial variables
z’, v/ -corresponding to the source coordinates- and z, y
-corresponding to the test coordinates. Part of its evalu-
ation can be performed analytically [12] and, by paying
attention to the choice of appropriate basis functions,
the integrals ”can be reduced to double integrals over fi-
nite domains” [13]. Thanks to the circular symmetry
of mixed potential Green’s functions, with appropriate
changes into polar variables, in this work they are re-
duced to a simple integral in the variable r (representing
the distance between source and probe):

2., = / W o (r)GA (r) — %Wu(r)c:q(r)} rdr

Zzy =/ -——C‘%Wgz(r)G’q(r)] rdr

Zyz =/ “%Wsy(r)Gq(r)} rdr

Zyy = / -le(r)G’;jy(r) - éwzy(r)(}’q(r)] rdr
' (4)

The unknowns I, and I, are the (complex) amplitudes
of the basis functions. The right-hand-side (rhs) vector
[V] depends on the excitation applied to the microstrip
network.

During the simulations two sources have been used:
the series voltage-source and the coaxial cable probe,
which has been modelled using suited surface current
distributions [14]. Using the voltage source the rhs vec-
tor is quickly filled in, as many of its terms are nulls.
Both sources, voltage source and coaxial probe, give the
samec numerical results.
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B. De-embedding Technique

The method described till now is well-suited in or-
der to evaluate the electric current distribution on the
conducting plane. Further elaborations are needed for
calculating the scattering parameters of the multiport
equivalent network. To this end, the latter network is
analized NV times, each time applying the source to a dif-
ferent input port and leaving open the remaining ports.
Accordingly, a linear system of size N? is attained, ex-
hibiting as unknowns the scattering parameters at the
various ports [15]. The terminal-plane locations are cho-
sen sufficiently far away from the discontinuities, so that
only the fundamental mode propagates. In this way, we
evaluate the propagation constant 8; and the complex
amplitudes of the incident (a;) and reflected (b;) fun-
damental mode by considering the current samples ob-
served at regular intervals along the center section of the
line (de-embedding section), as shown in Fig. 2. The
choice of an appropriate de-embedding section, and its
distance from discontinuities, is performed with suitable
heuristical procedures, taking into account the circuit
parameters and dimensions. If the source is applied on
a port, it is positioned at the end of the line, otherwise
the microstrip termination is left open, and the length
of this line is selected so as to allow vanishing of the
evanescent modes.

The de-embedding technique is based on Prony’s
method [16]: the longitudinal electric current is known
in 2M, sample points, and is approximated with a sum
of M complex exponentials:

M,
I(z,) = Z Amemna? per n=1,..N (5)

m=1

The amplitudes of forward and backward waves can
be evaluated from A,, terms. By applying this pro-
cedure to every line connecting the network with the
remaining part of the circuit in the N possible config-
urations, the final linear system is built, allowing the
evaluation of the network scattering parameters.

C. Code Testing

In order to demonstrate the reliability of the imple-
mented code, we illustrate now some results which com-
pare the theoretical analysis of some circuits. In Fig. 3
the results relative to a stub with a substrate thickness
of d = 1.27mm and €, = 10.65 are shown and compared
with experimental results [17]. In Fig. 4 the above pre-
sented technique has been applied to characterize a mi-
crostrip double-stub discontinuity; the matching section
is printed on a 10 mil substrate of relative permittiv-
ity 9.9: the magnitude and phase of the scattering pa-
rameters are compared to measurement from [18]. As
illustrated, the agreement for magnitude and phase is
excellent; in particular, the agreement of the phase is
within 4° across the considered frequency range.



Similar results can be obtained also at a fraction of
the numerical effort, by exploiting the numerical prop-
erties (i.e. the sparsity and the bandwidth reduction
scheme) of the discretized matrix, as discussed in the
next sections.

III. THE IMPEDANCE MATRIX

In the previous sections we have described the MPIE,
which, discretized via MoM, is suited for the efficient
simulation of arbitrarily-shaped microstrip structures.
In this section, we investigate the main numerical char-
acteristics of the approach, in order to enhance its nu-
merical efficiency. We will point out that the use of
appropriate strategies in the domain partitioning and,
above all, in the solution of linear systems, when cou-
pled with effective approaches for matrix permutation,
enables considerable speed-ups without significantly af-
fecting the accuracy of the simulation.

A. Preliminary Observations

The MPIE approach is well-suited to simulate cir-
cuits with arbitrary shapes, thanks to the partitioning
of the microstrip lines into elementary rectangular cells.
The simulation accuracy can also be increased by re-
ducing the size of the elementary cells, so as to better
approximate the metalization contour. A quite signif-
icant number of basis functions are needed in such a
case, with a consequent increase of the computing time
needed to evaluate the system matrix and to solve the
MoM system (3). These two steps (system generation
and solution) do not generally require the same amount
of time: the linear system solution is often much more
time-demanding, its complexity depending on the prob-
lem size N, as a function N&, with 2 < a < 3; on the
contrary, the matrix evaluation has a linear dependence
with the number of unknowns N.

The matrix entries’ computation has been enhanced
by exploiting some geometrical properties of the prob-
lem. Thanks to the radial symmetry of Green’s func-
tions, several matrix entries are identical; in addition
the matrix has a particular pattern, similar to a Toeplitz
one. Moreover, the electromagnetic interaction between
basis and test functions generally decreases for increas-
ing distances; their reaction term is significantly smaller
than those appearing in the main diagonal. Therefore,
a threshold distance value, d., can be found so that all
the terms corresponding to the interactions for a dis-
tance greater than d. can be omitted.

B. Properties of the System Matriz

In order to enhance the system solution time, as de-
tailed in the following section, it has been quite useful to
investigate the numerical properties of the system ma-
trix entries in (3). Some examples are proposed (Fig-
ures 5,6), showing the matrix patterns (viz. the zero-
non-zero structure) resulting for different circuit layouts.
From Figures 5,6 it is also apparent where the most sig-
nificant entries (with higher values) are positioned in
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the matrix; in these figures, the gray levels are related
to the magnitude of the matrix entry: a black entry has
a larger absolute value than a gray one, while values
smaller than 10~° have always been omitted.

Figures 5,6 clearly show that generally a few entries
are significantly larger than the remaining ones, hence
retaining an amount of information significant enough
in order to accurately solve the problem. Therefore, the
basic idea of this numerical analysis is the evaluation of
the effects of a thresholding action on the matrix en-
tries. We hence consider the following question: for a
fized threshold v, so that every entry smaller than vs is
neglected, how is the numerical accuracy perturbed? As
we will see in the following, the answer to the question
above will pave the way to the introduction of a band-
width reduction scheme which substantially decreases
the system solution time.

As observed from Figures 5,6, when increasing the
threshold value v, the percentage of ”zero” entries (i.e.
the sparsity S) grows up, the non-zero positions actu-
ally depending on the circuit shape. More specifically,
they are a consequence of the numbering scheme used
to order the basis functions.

However, also other parameters affect the system ma-
trix pattern: the frequency, the substrate thickness, the
dielectric constant, and the elementary cell’s size. We
evaluate the percentage of "significant entries” in the
system matrix at the highest operating frequency, which
is the most critical one.

As shown in the tables in Figures 5,6, for different v
the sparsity S of the system matrix has been computed,
as well as the relative error on the system solution,
and the consequent maximum error on the propaga-
tion constants and on the scattering parameters. These
computations have been performed with a 7-decimal-
digit notation. It can be observed that the propaga-
tion constant, being a variational quantity, is almost
not affected by the thresholding action. In other words,
Prony’s method is more robust in the exponent eval-
uation, rather than in the evaluation of the complex
amplitudes of the exponential functions. Finally, it can
also be noticed that a direct relationship exists between
vy and the error in the system solution, whilst the link
between v; and the error affecting the scattering param-
eters is less straightforward. Anyway, with a threshold
v, = 1073, the maximum observed error on the scatter-
ing parameters is generally less than than 3%, therefore
comparable with experimental errors. For such a v,
the sparsity is generally 70% < S < 85%, depending
however on the microstrip circuit topology, and on the
physical parameters (frequency, substrate thickness and
permittivity).

IV. BANDWIDTH REDUCED SOLUTION OF THE
LINEAR SYSTEM

The analysis performed in the previous sections
demonstrates that the linear system (3) is not necessar-
ily dense: when an appropriate threshold v, is chosen,
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so that the system matrix entries smaller than v, are ne-
glected, the matrix pattern becomes sparsc. Of course,
this implies some rounding errors, which, nonetheless,
allow to achieve a substantial reduction of the simula-
tion time.

A. The Impedance Matriz Sparse System Solution

A sparse system can be solved by using iterative meth-
ods (such as biconjugate-gradient algorithms), or direct
sparse solvers, which are not always robust. The lat-
ter perform an LU-factorization and a backsubstitution
solution; dealing with sparse matrices, this can lead to
the so-called "fill-in” problem [19], i.e. the risk of ob-
taining dense LU factors, with a high degradation of
performance. This problem is not encountered using
banded direct solvers, i.e. solvers suited to systems with
a banded matrix. Therefore, the effective choice for an
efficient and robust solution of the system is either iter-
ative algorithms or banded direct solvers.

The numerical complexity of both the above men-
tioned approaches is well-known, and is o(NZ) for it-
erative methods (with NZ equal to the number of non-
zero entries in the matrix) and o(BN?) for banded algo-
rithms (with BN equal to the matrix bandwidth) [19].
Therefore, a straight implementation of a banded solver
is generally less efficient than using an iterative solver:
the system matrix, as observed in the previously shown
example, generally exhibits a large bandwidth.

B. Bandwidth Reduction of the Impedance Sparse Ma-
triz
It is worthwhile to note that some manipulations can

be performed on the matrix pattern by using straight-
forward matrix algebra; in fact, the linear system

Ax=B (6)

has the same numerical properties of the transformed

system
(PTAP)(PTx) =PTB (7)

where P is a permutation matrix. This new system
(7) has an interesting property: depending on the ap-
propriate choice of the permutation matrix P, it can be
transformed into one with a minimum bandwidth. Once
the optimum permutation matrix is found, the efficiency
of the linear system solver is considerably enhanced by
using a banded direct solver, and orders of magnitudes
of speed-ups can be observed.

Moreover, an efficient use of direct banded solver is
attractive for two more reasons: in practical applica-
tions, when we need to evaluate the dispersion curve
at several frequency points, the optimum permutation
as evaluated at the maximum frequency in the working
range is also well-suited to every other frequency; sec-
ondly, when the same system has to be solved for dif-
ferent rhs, the factorization step can be performed just
once, and only the backsubstitution step is repeated for
every different rhs, this making direct solvers preferrable
to iterative ones.
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C. Methods for Bandwidth Reduction

In the past several different approaches have been pre-
sented for the evaluation of the optimum numbering of
rows and columns of the A matrix so as to attain a min-
imum bandwidth [19], [20]. [21], [22]. One of the most
effective approaches specifically devoted to bandwidth
reduction is that derived from the Cuthill-McKee (CM)
method [20], [21].

The main idea of this class of algorithms is related to
the graph representation of the matrix. Let us consider
the matrixA with a symmetric zero-non-zero pattern .
A so-called ”incidence” graph can be easily associated to
the latter matrix, as in Fig. 7, where each row/column is
represented by a node, and nodes ¢ and j are connected
each other if and only if the entry a;; is not a null.
The incidence graph can be partitioned into "levels”, as
shown in the same picture. All the nodes with the same
"distance” from the graph’s root are included in the
same level. It can be intuitively understood (and this
is demonstrated in [23]) that the larger the number of
levels in an incidence graph, the smaller the bandwidth
of the matrix. Therefore, the goal is to find out a node
numbering scheme that maximizes the number of levels
in the incidence graph.

The basic items of bandwidth reduction algorithms,
while being quite well-known to those acquainted with
bandwidth reduction and graph partitioning, are not
trivial, and can be summarized as:

« partitioning phase: select a new root node for the
incidence graph, and cut some edges, such that
there are edges only between nodes belonging to
the same level, or to two adjacent levels

« numbering phase: number the nodes by increasing
level, and inside each level number them according
to a particular criterion.

Starting from these ideas, a new approach (called
WBRA) has been proposed by the authors in [24], [25],
implementing some improved features and enhancing
the performance of bandwidth reduction and comput-
ing times quite substantially. The WBRA’s main new
features can be summarized in the following way:

« partitioning phase: the graph is divided into levels
so that the minimum number of nodes belong to
the same node (in fact, the bandwidth is directly af-
fected by the size of the largest subset). Differently
from the CM approach, the WBRA approach intro-
duces some heuristic criteria specifically devoted to
this goal

« numbering phase: the WBRA algorithm applies the
numbering to a set of ”promising” level structures
determined during the partitioning phase. Some
advanced (and rather complex) heuristic criteria
are then used to select the best level partitioning
and numbering in an efficient way. Differently from
CM approach, WBRA explores different level struc-
tures, this allowing better performance.

A simple example of the final matrix, level structure

and incidence graph for a sparse matrix is shown in Fig.



8. It can be easily observed that, starting from the in-
cidence graph in Fig. 7, if node 3 is transformed into
node 1, node 1 into 2, 4 into 3, and 2 into 4, the graph
of Fig. 8 and its companion matrix are obtained. The
corresponding P is

0010
1 0 0O
0 0 0 1
01 0 O
V. RESULTS

We present numerical results demonstrating the high-
performance of the approach for two cases: a 2-port
circuit (a double stub), and a 4-port one (a branch cou-
pler). All the reported simulations have been run on
an entry level workstation, with a 32MB RAM. The use
of a strategy for reducing the numerical complexity of
the problem (the thresholding), coupled with a state-of-
the-art method for bandwidth reduction of the system
matrix in (3), highly enhance the performance of the
code. The results compare the performance of the ap-
proach in three different possibie scenaries:

« No thresholding is performed, a dense solver

(Gauss-Jordan, GJ) is used in the (3)

« Thresholding is performed with a fixed v¢, and an
iterative sparse solver (biconjugate-gradient, BCG)
is used

« Thresholding is performed with a fixed v;, and the
bandwidth of the system matrix minimized using
WBRA. A banded solver (BN) is then used in the

3

A1§ ghe three linear system solvers (GJ, BCG, and
BN) are selected from SLATEC public-domain collec-
tion. The iterative sparse solver is generally used with
100-180 iterations, so that an error of 107° is achieved
(this value is enough to guarantee an appropriate con-
vergence also when a thresholding is performed). The
threshold value, as discussed in section 6.2, is 107°.

The computation is divided into two main tasks: the
time necessary to evaluate the matrix and the rhs in
the (3) (we call this step "system generation”), and the
time to solve the same system. When the GJ approach
is used, every frequency point is simulated with the same
computing time. In the BCG and BN case, this is not
true. The first frequency point (the upper limit in the
frequency range) is used to determine the matrix entries
which are smaller than v,, and need not to be computed
at next frequency steps. Moreover, in the BN case, also
the permutation matrix P so that the bandwidth is re-
duced, is computed, and the system rearrangement per-
formed as suggested in (7). Therefore, in the BCG and
BN case, the first frequency point analysis is slower than
the following ones.

A. 2-Port Network

The two-port network represented in Fig. 5 has been
simulated in the range 2.5-3.5 GHz. The dielectric con-
stant is 2.6, and the cell dimension is 3mm (uniform
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meshing with square cells). The system size in (3) is
220. In Table IT we show the performance results for the
main tasks. Times to perform the tasks (system gener-
ation, solution, and bandwidth reduction) are given in
seconds. An IBM RS6000 250 T, an entry level worksta-
tion, has been used. Times in Table I refer to a single
frequency point. Times for the system generation for
the BCG and BN case suppose that the thresholding on
the matrix entries has already been performed. As pre-
viously discussed, this can not be assumed for the first
frequency point. In that case, the system generation is
performed in 53 s for the GJ case, and in 44 s in the
BCG and BN cases.

Table I: Times for the different tasks (in seconds) for
one frequency point.

Method | System | System | Bandundth

Gen Sol. .Red.

GJ 53 4.5 -

BCG 11.9 3 -

BN 11.9 0.2 0.5
The sparse matrix solved with BCG is obtained with a

10~% threshold, and its bandwidth is 208. Using WBRA
it is reduced to 72. It must also be observed that the sys-
tem (3) solution is repeated for each frequency point as
many times as the number of ports, in order to evaluate
the scattering parameters.

In Table II the timings for a complete frequency anal-
ysis (100 frequency points) are presented for the three
methods. Remember that if the first frequency point is
the upper-frequency one, the bandwidth minimization
can be performed only once (as previously discussed in
section 6.2).

Table II: Times (in seconds) for 100 frequency point.

Method Upper Remaining | 7ot me
Freq. Point | 99 Freq. Points

GJ 62 6138 6200

BCG 50 1772 1832

BN 45 1198 1243

It can be seen that a global speed-up of more than 3
times is attained with the BCG strategy, and of around
5 with the BN+WBRA strategy. This is due to the
huge performance improvement obtained in the linear
system solution. Using the thresholding, the BCG solves
the sparse system in around 3s instead of 4.5s (dense
GJ). The BN solver, after the bandwidth minimization
(which takes 0.5 s) performs the solution in 0.2s. More-
over, the banded solver is a direct LU algorithm. As
stressed before, for each frequency point the system is
solved as many times as the ports are (this case 2 times)
with different rhs. This means that using the banded
solver the only backsubstitution step is performed twice,
and it is quite well known that this step is very fast,
compared with the LU factorization step.

The improvement in the efficiency is obtained without
degradating too much the accuracy of the simulation:
both the BCG and the BN strategy affect the result with
an error of around 3%, as already shown in the table in
Fig. 5. This is quite satisfactory, and still comparable
with experimental errors.
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B. 4-Port Network

The results for the 4-port coupler of Fig. 6 are pre-
sented following the same logical path of the previ-
ous section: the GJ, BCG and BN strategy are com-
pared, demonstrating the superior performance of the
BN+WBRA strategy. As the number of ports is in-
creased in this example, very substancial speed-ups are
achieved.

The circuit is studied in the range 2.5-3.5 GHz, with a
substrate with ¢ = 2.6, and square cell size of edge 3mm.
In Table III results are shown, with times in seconds
referred to the above mentioned IBM 250 T. Data do
not refer to the first frequency point (upper limit of the
range). In that case, the system is generated in 111.4 s
with the GJ approach, and in 81 s with the BCG and
BN one. The system size is 401.

Table III: Times for the different tasks (in seconds)
for one frequency point.

Method | System | System | Banduwtidth
Gen. Sol. Red.

GJ 111.4 57 -
BCG 15.4 74 -
BN 15.4 0.6 2

In this case, the bandwidth of the sparse matrix ob-
tained performing a thresholding with v, = 107> is 310,
and by applying the WBRA it is reduced to 82, with
a huge enhancement in the solution time when the BN
solver is used. For the coupler, the speed-ups for a 100-
point frequency curve are very interesting, as the system
solution is repeated 4 times for each frequency point,
and a direct LU banded solver is extremely suited and
effective. Table IV demonstrates this, showing the total
times for the whole frequency analysis:

Table IV: Times (in seconds) for 100 frequency point.

Method Upper Remaining | Total Tvme
Freq. Point 99 Freq. Points

GJ 338.6 33521 33860

BCG 141 4356 4497

BN 112.2 1723 1835

It can be seen that the BCG strategy is more than
7 times faster than the standard implementation of the
MPIE approach solved with the MoM. A strategy based
on WBRA for bandwidth reduction and a BN solver is
more than 18 times faster. Also in this case, the error
in the solution is around 3% (see the table in Fig. 6) on
the computed scattering parameters.

This last example demonstrates that on increasing
the number of ports, and the complexity of the circuit
layout, the proposed strategy becomes more and more
high-performing.

VI. CONCLUSIONS

An efficient electromagnetic and numerical approach
has been proposed for the analysis of arbitrarily-shaped
microstrip circuits, based on the solution of the Mixed-
Potential Integral Equations via Method of Moments.
The use of analytically evaluated closed-form Green'’s
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functions and general de-embedding techniques makes
the code efficient from the electromagnetic view-point.

A detailed analysis of the resulting linear system,
which solution represents one of the key-issues in the
code performance, has demonstrated that, even for stan-
dard rooftop basis functions, at the cost of small degra-
dation of the solution accuracy, the generally dense lin-
ear system can be reduced to a sparse one, with a spar-
sity generally in the range 70-85%.

The use of a method for the bandwidth reduction of
sparse matrices developed by the authors, while outper-
forming the previously proposed approaches for band-
width reduction, when coupled with a banded direct
solver, is shown to produce a substantial speed-up in the
numerical simulation of microstrip circuits. A speed-up
of 5 times has been achieved on a 2-port circuit, and of
18 times on a 4-port circuit.
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Fig. 1. A general microstrip structure.
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Fig. 5. The layout of a double-stub, and the corresponding ma-
trix pattern for different v¢ values. In the table, the sparsity,
solution error, and error in B and scattering parameters are
shown for different v: values.
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