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Abstract - The numerical solution of the Eleciric Field
Integral Equation (EFIE) using two different low frequency
formulations is investigated. The two procedures are
implemented for the triangular patch modeling procedure
and resulis obtained for both methods are compared with the
original triangular patch EFIE solution. The comparisons
are made on the basis of the computed current values and
the inverse condition number of the moment matrix. It is
observed that the condition number of the matrix can be
significantly different between the two low frequency
formulations and that the method used to evaluate the
Jorcing function can affect the results both in the low and
high frequency ranges.

I. Introduction

The commonly used numerical solution procedure for
the Electric Field Integral Equation (EFIE) has been found
to become inaccurate in the frequency range where the
maximum dimension of the surface is much smaller than a
wavelength [1,2]. The problem arises in the evaluation of
the elements of the impedance matrix in the moment method
solution procedure, because, if the mixed potential form of
the EFIE is used as an example, one observes that

|jwA | << | V& |, as w—0. Thus, for a fixed precision
computation, the information on the magnetic vector
potential A is lost when the frequency is low enough, and
the remaining information from the electric scalar potential
is not sufficient to determine the surface current distribution.
Consequently, the solution is numerically unstable.

This problem may be partially overcome by simply
increasing the numeric precision used in the computer code.
However, to obtain an EFIE solution that has the potential
to be stable at any frequency, a special method of moments
solution procedure must be used.

In the sections, two

following low-frequency
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formulations, referred to here as the Loop/Tree and
Loop/Star formulations, are presented. These two
formulations have been previously studied and have been
applied to different method of moments solution procedures
[1-5]. Wilton and Glisson first observed the low-frequency
problem of the EFIE and applied the Loop/Tree approach as
the new testing procedure for a rectangular-patch model of
a perfectly electrically conducting plate [1]. Mautz and
Harrington explored in greater detail why the numerical
solution becomes inaccurate in the low frequency range, and
they applied a procedure equivalent to the Loop/Star
formulation to their body of revolution code [2]. Lim, Rao,
and Wilton applied the Loop/Star procedure to their
triangular patch model [3]. Recently, Wu, Glisson, and
Kajfez applied both the Loop/Tree and Loop/Star
formulations to another triangular patch model and
compared results obtained using the two procedures [4,5].

This paper is an extension of [4,5] and sums up our
recent research on this topic. A new version of the patch
code, referred to here as LFPATCH, has been developed to
apply either the Loop/Tree or Loop/Star formulation to
extend a version of the patch code [6] to the low frequency
range. The modifications for both formulations require the
use of different expansion and testing functions that tend to
decouple the electrostatic and magnetostatic portions of the
solution. A Galerkin testing procedure is used to obtain the
system of linear equations. The two different formulations
are compared with each other and with the original
triangular patch code with regard to accuracy. The two
low-frequency formulations, the Loop/Tree and Loop/Star,
are described in Section II. The influence of the form of the
forcing function on the solution for the low-frequency
formulations is discussed in Section III. The numerical
results are shown in Section IV to demonstrate the
improvement of the stability of the impedance matrix and
the accuracy of the computed current density. A summary
is provided in Section V.



II. Low-Frequency Formulations

The scattering problem of a perfectly electrically
conducting (PEC) body subject to illumination by a time
barmonic incident plane wave can be formulated via the
EFIE as

E_ (D = [jwA(® + V&@®l,,, rons O
where E' represents the incident electric field, § is the
surface of the scatterer, and the subscript zan denotes the
component of a quantity tangential to the surface S. A and
& are the magnetic vector potential and the electric scalar
potentizal defined by
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and where k = w(ue)'’2, and u and ¢ are the permeability
and permittivity of the surrounding medium. The surface
charge density o is related to the surface divergence of J
through the equation of continuity

G

VeJ = —jur ®)

Many method of moments [7] schemes have been
developed to obtain the numerical solution for equation (1).
One of these is the triangular patch model [6], which is
based on a method of moments solution of the EFIE in
conjunction with 2 planar triangular patch model of the
scatterer and a special set of basis functions. In this section,
for completeness, we first describe the basis function used
in the original patch code [6]; then the two other vector
basis function sets that are suitable for low-frequency use
are described.

In the method of moments solution procedure, the
surface current density .J is approximated as

N
J =3 Lu® (©)
n=1

where N is the number of unknowns, I, is an unknown
coefficient to be determined, and u, is a vector basis
function. For the formulation described here, u, in (6) is
chosen from one of three different sets of basis functions:
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), J,Land J%Y, or {J,L and J,7}. These three sets of
basis functions are briefly described in following.

The original vector basis function f,

As in [6], £, is a vector basis function defined on a pair
of adjacent triangles T, ¥ associated with the n* non-
boundary edge of the model, as shown in Figure 1 and
defined by equation (7), where I, is the length of 7" edge
and A, % is the area of triangle 7, *.

ZA:‘ Py, TinT)
=11 M
Fl) =4 o, Tin T,
24,
0 . otherwise
n-th edge
1lg —>

Figure 1. Local coordinates associated with an

edge.

To extend the ornginal patch code [6] to the low
frequency range, vector basis functions are presented based
on the work in [1-3]. These new vector basis functions J,
are divided into two types, J,= and either J,5 or J,7, with
the following properties which make them suitable for use
in the magnetic vector and electric scalar potentials at low
frequencies:

. J,,L is associated with interior nodes and is
divergenceless;

e J.5 isassociated with faces and is curl-free;

. J"T is equivalent to f, but is only associated with
the interior edges of the model that lie along a
tree structure connecting the centroids of the
triangular patches.



The combination of J’,,L and Jns is subsequently referred to

as the Loop/Star basis function set, and the combination of
gy L and J, T is referred to as the Loop/Tree basis ﬁmctlon
set. Each of the basis functions J, L, J S, and J can be
constructed as a linear combination of the vector basis
functions f,, defined in (7).

The vector basis function J,,L

Figure 2 illustrates in a simplified form the Loop
basis function J, L associated with an mtenor node of
Within each tnangle attached to node ot J has vector
direction parallel to the edge opposite to node n~ and,
therefore, J forms a loop around node nf. In Figure 2(a),
aside from the edges which are opposxte node nf, all the
other edges are connected to node nl. The currents at these
edges connected to node nf would be unknowns in the
original patch code and each would be associated with an
original vector basis functions f,. To obtain the vector basis
function J, L associated with the interior node nf, basis
functions f are first associated with the edges connected to
node nl and are then combined together in a particular
manner, so that only a single basis function having zero
divergence remains. Figure 2(b) shows the edges and local
coordinates associated with one of the triangles in Figure
2(a). In Figure 2(b), if node 1 corresponds to node ot in
Figure 2(a), then JHL in this triangle is parallel to edge 1.
As indicated in [6], a constant vector of arbitrary magnitude
and direction within the triangle may be synthesized by a
linear combination of two of the original vector basis
functions. Thus, in conjunction with the definition of the
vector basis function in equation (7), a vector L within the
triangle of Figure 2(b) can be formed as

_ 24, _
T

where L, and I; are the lengths of edges 2 and 3,
respectively, and A is the triangle area.

L _21_:;;3 ®)

The basis function JnL in the triangle of Figure 2(b) is
then defined to be

®

This definition holds for all triangles attached to interior
node o by using the local coordinate notation in Figure 2(b)
for each trangle attached to node n*. Then the basis
function JnL associated with interior node nf is defined as

‘L
LE=X-l

J-1 7

(10
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Figure 2. A representation of the vector basis
function J, associated with an interior node n*.

where N, is the number of triangles attached to node ok, LJ
1s the vector parallel to the edge opposme to node oF in the
J triangle, and A, is the area of the j triangle. We note
that the triangular patch loop basis function of (10) has been
previously used in the computation of polarizabilities for
conducting disks and apertures [8] and for magnetostatic
solutions for arbitrarily shaped bodies [9].

The vector basis function .I,,S

The "Star” vector basis function Jns of [3] is associated
with faces and is shown in a simplified representatlon in
Figure 3. The domain of the basis functlon J associated
with the n triangular face con51sts of the n* face itself and
all of the faces attached to the n”* face. The mew basis
function is constructed by first placing an original basis
function f, on the triangle pair associated with each edge of



the n® face and orienting these f,’s so that current flows out
of the n¥ face for each one. Finally, the "Star" basis
function is formed by summing over the £’s to obtain

Sm‘f ni
£

3
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i-1

(an
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ni

where f,; is an original vector basis function associated with
edge i of the #* face, and S,; is a sign and magnitude
coefficient chosen from the set {-1, 0, 1} to provide current
flow out of the n** face for a non-boundary edge i or to
eliminate contributions from boundary edges.

Facen

Figure 3. A representation of the vector basis
function JnS associated with a triangular patch.

The vector basis function JRT

The "Tree" basis function Jnr consists of the f,’s for
the interior edges of the model that lie along a tree structure
connecting the centroids of adjacent triangular patches. The
definition of tree and branch for the rectangular-patch model
in [Ch.8, 10] is also applied for the triangular patches used
here. A possible choice of the tree for a triangular patch
model is shown in Figure 4. Once a tree is obtained, JnT
can be defined as

: Ji » if edge t intersects a tree branch (17)
g 0 , otherwise

where £, is the original vector basis function associated with
a non-boundary edge z.

With these definitions, three simple approaches are used
to form a complete set of basis functions. The surface
current density J is then approximated by either of the three
basis function sets. If the set of original vector basis
functions f, is chosen, i.e., if the same basis set as in [6] is
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used, then

N
Jo = Y LAO (13)
n-1

where N is the number of interior (non-boundary) edges in
the triangular patch model. If the Loop/Star basis function
set 15 chosen, then J is represented as

N
Y LL'o 9

N
Jo = Y 10+
n-1 n=NEa1
where NT is the number of interior nodes, and N - M+
is the number of faces in the triangular patch model. If the
Loop/Tree basis function set is chosen instead, then

N
Y Lo 49

N
Jn =Y rLrte +
= n=NE 1

n-1

where N - N is the number of tree branches in the
triangular patch model.

Figure 4. A tree structure connecting the centroids
of adjacent triangular patches.

The basis function set JBL must include an additional
type of element if the body being modeled is not simply
connected, as shown in Figure 5. The connectivity of the
body can be determined from the triangular patch model for
some classes of geometries by noting, for example, that the
triangular patch model of a simply connected open surface
without any "handles" will have either no "aperture” or only
one "aperture,” i.e., either there will be no boundary edge
or the union of all of the boundary edges in the patch model
will form a single closed curve. For each additional
aperture in the model it is necessary to include a "super-
Ioop" basis function of form similar to ]nL. These



additional basis functions will form loops arcund apertures
rather than around interior nodes of the model. In Figure
5, the surface modeled by trangular patches has two
apertures; therefore, am additional “super-loop” basis
function is needed if one uses one of the low-frequency
formulations to determine the surface current. Additional
"super-loop” basis functions are also needed if a body
modeled by triangular patches has any "handles,” as is the
case for a closed body that is not simply connected, such as
a torus, or for the general open-body geometry iflustrated in
[6]. The definition and topological properties of a "handle”
can be found in {11]. The construction of a "super-loop”
basis function is similar to that of Loop basis function J L
The only difference is that the Loop basis function JBL" is
formed by all f,’s attached to node nl, while a "super-loop”
basis function can be formed by all the f’s associated with
edges that are attached to an appropriate aperture (gither
aperture 1 or aperture 2 in Figure 5, for example),

Figure 5. An object with two apertures.
With a Galerkin testing procedure, the impedance

matrix elements for the three different basis function sets
may be represented as

Borg] . = Jo<AG). f> + <IV&(T,£). >
w (16

)
[ 1L s ]
e, - Brm Brm an
e es age
- L o
2o, = B B (18)
7 ABE BT

with
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Bl = ju <A(J,5).J . >
c = <év¢(V,-J,f)J,‘,,>

where the superscripts 5,6 may be either L, §, or T and
indicate the source and testing function types, and <>
denotes the symmetric product. The brackets on the right
side of (17) and (18) indicate that the matrix element is
given by one of the expressions for the four different
subtypes of matrix elements arising due to the two different
basis and testing function types, the local subscripts m and
r in (17) and (18) are assumed to be mapped appropriately
into the global matrix indices p and g, and the subscripts
orig, L/S, and L/T on Z denote the basis and testing
function types. Equation (16) uses the original basis and
testing functions; equation (17) uses the Loop/Star basis and
testing functions; and equation (18) uses the Loop/Tree basis
and testing functions.

If one compares equations (17) and (18) with (16), it is
evident that the magnetic vector potential contribution to the
elements of the impedance matrix appears alone in the upper
portions of Z;,; and Z; ., and, therefore, is not lost in
comparison with | V¢ | during matrix element
computation. We also mnote that the low-frequency
formulations described in this section are valid in principle
at any non-zero frequency.

III. The Forcing Function for Low-Frequency
Formulations

When a Galerkin testing procedure is applied to
equation (1), the left side yields the forcing function, or
excitation vector | V> for the system of equations. Four
different types of excitation vector elements can be obtained
by using £,, J,5, J.5, or J.7, as described in the last
section. If the original basis function f, is used as the
testing function, the same excitation vector as in [6] is
obtained

orig _
Vi o =

<E™ f > = JE""“ < £, dS (19
S

where m = 1,2,...,N, and N is the number of interior (non-
boundary) edges in the triangular patch model. For
simplicity in the numerical calculation, E™ is often
approximated by the corresponding value of E™ at the
centroid of each triangle. If Jn:r is used as the testing
function, then



VOrg  if edge t intersects a tree branch
y Tl if edg 2
0 , otherwise
where p = 1,2,...,N-NE is the p* tree branch, and Nt s

the number of mterlor nodes in the triangular model. If J, S
is used as the testing function, then

3 orig
S ngq.
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(21)

where g = 1,2,...,N°%", N is the number of unknowns
associated with the Star basis fupction, and Sq,- is a sign
coefficient chosen in the same manner as for (11).

It is evident that we use the same strategy to form the
excitation vectors | V7> and | V5> as we did in last
section to develop the Tree and Star basis functions. But
when J, L is used as the testing function, there are two ways
to evaluate the excitation vector | V¥>. In the first
approach, we use a linear combination of the V, s given in
equation (19) to construct the excitation vector | VE>
Applying the same procedure as for the construction of the
Loop basis function in last section, we obtain

ong

orig
2V
5

where V2" is given in equation (19), i=12,.,N, N, is
the number of triangles attached to i* the mtenor node nL
in the triangular patch model, and the subscripts 2 and 3
refer to local edge numbers as in Figure 2. The superscript
Lei denotes the testing function is a Loop testing function,
and that the incident electric field is used in the calculation.
In the second approack, we start with the symmetric product
expression for the excitation vector with the Loop as the
testing function:

E ( ) (22)

N

E [Einc . JEL ds (23)
Fls

yiA

H

i <Einc’JiL>

Using a vector calculus identity [12], equation (23) can be
written as

N,

h) I"r’-" A+ (VXE™") ds

1l

V'_Uu‘ (24)

which can be further manipulated to
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N,

VE = jopy
i1

[¢@-m™as @
;)

where Y is a scalar function [9] defined over the j * triangle
attached to node nl (cf. Figure 2), and H™ is the incident
magnetic field. If H™ is approximated by the
corresponding values of H™ at the centroids of each
triangle attached to node nf, then

N,

Lhi _ _ .. 2 o gyinc € 26
V; jong J;:Ajﬁ =) (26)

where A] is the area of the j* triangle attached to node n
and r} 1s the position vector to the centroid of the _]
triangle. The superscript Lkhi denotes that the testing
function is a Loop testing function, and that the incident
magnetic field is used in the calculation. This result is
similar to that obtained by Arvas et al [9], where the
magnetostatic problem was solved. It is apparent from (23)
to (25) that testing the incident field with the Loop testing
function is equivalent to performing & curl operation.
Comparing | V9> of (22) with | VI¥ > of (26), one
notes that | V¥> effectlve 5‘ evaluates the curl of E™
numerically, while for '> the curl operation is
performed through the analync procedure (23) to (25). In
principle, either | V*> or | VE%> can serve as the
excitation vector. However, the numerical results have
demonstrated that computational advantages can be gained
by using | Vl‘f> in the higher frequency range and by
choosing | V%> when the operation frequency is in the
lower frequency range (i.e., when the scatterer is very small
in terms of wavelength). This is not surprising, since
evaluation of | V24> over a loop results in substantial
canceliation of the electric field vector over the testing path
and a subsequent loss of precision when the testing path is
small in terms of wavelength. Numerical results
demonstrating these effects and further discussion are
presented in the next section.

IV. Numerical Results

The two low-frequency vector basis functions described
in the previous sections have been incorporated in a version
of the patch code [6]. This new version of the patch code
is referred to here as LFPATCH, which stands for Low
Frequency triangular patch code. To study the behavior of
the code for the different approaches, several structures
have been studied over a wide frequency range. Numerical
results are presented in this section comparing the inverse of
the condition numbers [13] of the impedance matrix and
current distributions obtained using the different basis



function sets. All the scatterers studied are modeled by
triangular patches and subject to illumination by an incident
plane wave.

To observe the effects of numerical precision of
different computers, the examples are computed on different
platforms with different precision. The two platforms used
for the numerical computations are an IBM 3084QXC
Mainframe and a Cray Y-MP8D/464 Supercomputer. The
Cray single precision computation is effectively equivalent
to the double precision computation on the IEM mainframe.

Flat Square FPlate Scatterer

The first example problem considered is a square, flat
plate PEC scatterer illuminated by an incident wave with the
H component normal to the surface of scatterer, as shown
in Figure 6. The inverse condition number obtained for the

X
L b k_%.g
H
S
Figure 6. A triangular patch model of z flat

square plate scatterer.

impedance matrix using the original, Loop/Tree, and
Loop/Star basis function sets are shown in Figure 7. Figure
7(a) shows the inverse condition number for the three basis
function sets obtained by running the code on the IBM
mainframe using single precision, and Figure 7(b) shows the
same case, but running on the Cray supercomputer. The
inverse condition number for the impedance matrix using the
original basis function set is found to start oscillating wildly
when L/X is smaller than about 107 for the IBM single
precision result. When the impedance matrix is evaluated
on the Cray, there is no oscillation, but there is a clear
change in the behavior of the curve at L/N = 10%. The
inverse condition numbers for the two low-frequency
formulations are essentially constant as a function of
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Figure 7(a). Inverse condition number for a
square plate scatterer obtained using single
precision on the IBM mainframe.

— Loop/Tree
=== Loop/Star
Original

Inverse condition number

Figure 7(b). Inverse condition number for a
square plate scatterer obtained using single
precision on the Cray supercomputer.

frequency for L/A smaller than about 102 regardless of the
platform used. It is also noticed that the condition number
obtained with the Loop/Tree basis function is more than an
order of magnitude better than that obtained with the
Loop/Star basis function.

The effect of using either | V> or | V&> on the
computed current distribution for the flat plate scatterer is
shown in Figures 8 and 9. The data for both Figures 8 and
9 were generated on the Cray supercomputer. Figures 8(a)
and 9(a) show the absolute value of the real and imaginary
parts of the current coefficient for edge 22 of the model
(Figure 6) over a wide frequency range, while Figures 8(b)
and 9(b) show an expanded plot over the higher portion of
the frequency range. One observes from Figure 8(a), for
which | V%> is used, that good agreement is obtained for
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Figure 8(a). Current density at edge 22 for the
flat plate scatter obtained using the excitation
vector | V>,

the real part of the current using the two low-frequency
formulations; however, the result obtained using the original
basis function becomes erratic at the frequency where the
impedance matrix becomes unstable (see Figure 7(b}). The
imaginary part of the current obtained with the two low-
frequency approaches, on the other hand, becomes
inaccurate for L/\ smaller than about 10°%, where one notes
that the computed current begins to rise as the frequency
decreases. If we use | VL% > instead, the result obtained
is shown in Figure 9(a). For frequencies such that L/A less
than about 107!, the real part of the current compares well
with the results in Figure 8(a); however, the imaginary part
of the current for Loop/Tree and Loop/Star basis functions
behaves correctly over this same frequency range, unlike the
results of Figure 8(a). Expanded plots of the current

76

Real Part
0
[
o
L]
-]
-
-]
Q
-
L
L]
e~
2
|
ha
L]
=
0.0 : / .
d.0100 0.2575 0.5050 0.7525 1.0000
L/
Imaginary Part
26 r T
8 20t -
o
<
@
8 15t :
la |
k]
o 1o} -
2 Loop/T
| —s— Loop/Tres
¥ asl ~-w=- Loop/Star
= : —o— QOriginal
0.0 . . . .
0.0100 0.2575 0.5050 0.7526 1.0000
/A
Figure 8(b}. Current density at edge 22 for the

flat plate scatter obtained using the excitation
vector | V¥ > (high frequency range).

obtained using the excitation vectors | V&> and | V4>
for the two low-frequency approaches over the higher
portion of the frequency range are compared with the
original EFIE procedure in Figures 8(b) and 9(b). Over the
part of the frequency range shown in Figure 9(b), ome
observes that the currents computed using | V2% > do not
agree with each other or with the original EFIE. For the
same frequency range, the currents obtained using | Vs
for the two low-frequency approaches, shown in Figure
8(b), are in excellent agreement for both the real and
imaginary parts of the current for the three different solution
procedures. The results shown in these figures suggest that
a different Loop testing procedure should be used for the
excitation vector calculation for the high and low frequency
range. If we consider Figures 8 and 9 again, we can
roughly divide the entire frequency range into three
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Figure 9(a). Current density at edge 22 for the
flat plate scatter obtained using the excitation
vector | VE#¥ >,

convenient regions: region A, where L/\ varies from 10°
to 10%; region B, where L/X varies from 102 to 1077; and
region C, where L/\ is smaller than 107, In region A, the
size of a triangle (4=0.01397\% at L/A = 1) is comparable
in size with the wavelength. To understand the failure of
| VE¥> in this region, we note that when | V> was
derived in the previous section, an analytic curl operation
was performed around the interior node n* via a vector
calculus identity. If one recalls that the integral definition
of the curl operation evaluates a vector field as an area tends
to zero, which implies the field does not change rapidly
around node nf, it is recognized that the numerical
application for this definition may not be appropriate in
region A. As the frequency decreases, especially in region
C, the size of triangle becomes very small in terms of
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Figure 9(b). Current density at edge 22 for the

flat plate scatter obtained using the excitation
vector | VI¥> (high frequency range).

wavelength, and the value of | V%> becomes quite
accurate.  The good agreement between all of the
approaches in region A for the results obtained when using
| Vi€ for two the low-frequency approaches is because
all the quantities (A, &, E™™) are evaluated at the same
points, the triangle centroids, and because there is little loss
of numerical accuracy due to cancellation when the triangles
are not small with respect to the wavelength. When the
frequency falls into region C, the variation of E™ is very
small over the domain of the loop basis function
(A=1.39x10'%)\% at L/\ = 1077), and the testing procedure
leads to the subtraction of very similar field quantities,
causing a loss of precision in the computation of | yieis
for the two low-frequency approaches, which leads to
unacceptable results. In region B, both | V&> and
| VI for two the low-frequency approaches provide
essentially the same result. For the results shown
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Figure 10(a). Current density at edge 22 for the
flat plate scatter obtained using the excitation
vector | VE¥"> on the IBM mainframe using
single precision.

subsequently, we use | V%> in region A, | VF¥> in
region C for the two low-frequency approaches, and switch
between the two excitation vectors in region B according to
the size of triangle respect to the wavelength. We refer to
this as the combined Loop testing procedure, and the
corresponding excitation vector is denoted as | vichs |
Figures 10(a) and 10(b) show the current density at edge 22
in Figure 6 obtained using the three basis function sets and
on different platforms. Since the | VX" > is used for the
Loop testing function, the results obtained with the two low-
frequency approaches now agree with each other over the
entire frequency shown and are stable even computed on the
IBM mainframe in single precision.
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Figure 10(b). Current density at edge 22 for the
flat plate scatter obtained using the excitation
vector | vk > on the Cray supercomputer using
single precision.

Long Narrow Bent Strip

The next example presented is a long narrow (1.=30W)
strip which forms a square, open loop, as shown in Figure
11. In this example, to make a simple model with relatively
few unknowns for this shape of scatterer, the sizes of
triangular patches in the model are not made uniform.
Results are shown in Figure 12 for the inverse condition
number in this case, and they are similar to those of the
previous case, except that the inverse condition number for
the Loop/Tree basis function set is now about two orders of
magnitude better than that of the Loop/Star basis function
set. Consequently, one might expect for this case that the
Loop/Tree procedure is the only one likely to provide a
reasonable solution with single precision on the IBM



)

X B )
Figure 11. A long narrow bent gtrip (L=30W).

mainframe. From Figure 12(b), it can be observed that, as
the precision is increased, the the inverse condition number
results obtained using both procedures are large enough
relative to the machine precision to expect accurate
solutions, while that obtained using the original basis
function set shows improvement for L/X larger than about
108, but again deteriorates when L/A becomes smaller than
about 10°°. The results for the current on one of the edges
shows behavior similar to that of in previous case.

It should be noted here, however, that scaling of the
basis functions may affect the matrix conditioning [14].
Indeed, we have observed, for example, that if the edge
length factor in the denominator of (11) is omitted, the
Loop/Star results are worse by almost an order of
magnitude. The Loop basis and testing functions are the
same in both low frequency methods. Nevertheless,
application of a scaling factor to the Loop functions may
improve the Loop/Star and/or the Loop/Tree condition
numbers and is a subject for further research.

V. Summary and Discussion

Two special method of moments solution procedures
used to improve the accuracy of the numerical solution for
the Electric Field Integral Equation (EFIE) in the low
frequency range have been studied. Two alternate vector
basis functions have been implemented in a version of the
triangular patch code [6] to extend its usefulness to the low
frequency range. Numerical results have been presented for
two different types of structures over a wide frequency
range. The inverse condition numbers of the impedance
matrix and the computed current values as a function of
frequency have been presented to illustrate the improvement
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Figure 12(a). Inverse condition number for a long
narrow bent strip obtained using single precision on
the IBM mainframe.
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Figure 12(b). Inverse condition number for a long
narrow bent strip obtained using single precision on
the Cray supercomputer.

of the EFIE solution in the low-frequency range. It has
been found in our implementations that using the Loop/Tree
basis and testing functions usually yields a more stable
impedance matrix (i.e., one with a larger inverse condition
number). This is very useful when modeling a resonant
structure that is small in terms of wavelength, since near the
resonant frequency, the inverse condition number of the
impedance matrix usually drops several orders of magnitude
from that of the off-resonance case. This is also helpful
when the code is running on a computer with lower
precision. Additional study of scaling procedures may result
in further improvements of the inverse condition numbers of
one or both of the low frequency methods.
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