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Abstract- In the numerical solution of field problems for many
devices, the modeling of the hysteresis properties of a material is
extremely important. While considerable work has been
published on models for handling this behavior, it is still difficult
to obtain the parameters for these models from measured data.
This paper proposes the use a neural network for this operation.

I. INTRODUCTION

The design of an electromagnetic device invariably uses
the properties of magnetic materials in order to guide and
shape the field so 2 that the desired output effects are
obtained. It is obvious that the materials and their properties
are critical to the correct operation of the system and thus any
attempt to analyze the behavior of such a system must contain
an accurate model of the material properties. Until recently,
most low frequency devices have been constructed using soft
magnetic materials, i.e. ones in which the relationship
between the magnetic flux density (B) and the magnetic field
(H) is largely single valued. In such devices, the material is
used largely to provide an easy flux path for thus both
containing the field and reducing the cost of generating it.
However, advances in material technologies coupled with a
need to create sources of magnetic field have resulted in more
and more practical devices using hard magnetic materials, i.e.
ones in which there is a deliberate attempt to retain
magnetization information. Such materials exhibit hysteresis
and have a relationship between B and H (or M and H) which
is multivalued and dependent on previous history. Thus it is
becoming important that computationally efficient systems
are developed for modeling such properties.

Currently, the Preisach Model seems to be one of the most
practical for solving this problem based on its requirement for
computer memory and time [1],[2]. The model, as are most of
the others, is basically phenomenological and does not claim
to be accurately representing the physics at a micro level.
Rather, it can be used to develop material models which
appear 1o have the same macro responses to a magnetic field
stimulus as the
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real material However, before such a model can be used, the
necessary parameters must be identified from the real material
behavior. Currently, the approaches to solving this problem
are largely empirical and, thus, problem dependent. In this
paper, the use of the neural network paradigm is proposed in
order to overcome these difficulties. Two different forms of
artificial neural networks are proposed; the first uses Radial
Basis Functions, while the second employs a CMAC (a form
of associative memory) [3]. The combination of these two
structures appears to provide both the generalization
properties which are expected from a neural network and an
improvement in the speed of learning. The use of Radial
Basis Functions has a significant advantage over more
conventional summing operators in that they provide a
method by which the learnt knowledge (or parameters) may
be extracted from the network after it is trained. The goal of
the work is to model the parameters such that both the major
and minor loop behavior of the material is characterized
effectively. However, using the Preisach model in an actual
analysis situation based around a finite element mesh is likely
to be expensive in both time and memory since each element
in the system (and there may be hundreds of thousands of
them in a 3-d system) requires that the local magnetization
history be maintained. Thus this paper proposes a method for
training a second neural network by using the Preisach model.
This network can then be used in a computational system and,
it is hoped, will reduce the time and memory requirements for
a non-linear analysis involving hard magnetic materials.

I1. RADIAL BASIS FUNCTIONS

The most common form of neural network currently being
used is based around a set of simple neurons (processors)
capable of generating an output based on the weighted sum of
the inputs:

Oj =2Wi1i (1)
i=i

However, a single layer of such neurons cannot handle
problems which are inherently non-linear. In essence, a single
layer, when the weights have been determined from a training
set, performs a separation operation on the input data. That 1s,
in & binary system, the output neuron goes to state 1 if the



weighted sum of the inputs exceeds some prespecified
threshold and is zero otherwise. In order to solve this
problem, hidden layers of neurons are added and this
generates the classical feed-forward neural network as shown
in Fig. 1.

The problem with the hidden layers is that the system
becomes difficult and expensive to train - this is referred to as
the 'hard-learning’ problem and is related to the fact that the
only error measurements which can be made on the network
are at the outputs but the weights of the hidden layers must be
adjusted based on these. The general strategy for training
relies on the back propagation of the errors to the input and
the training problem can then be stated in terms of a more
conventional fitting or optimization process.

Input

Hidden

Figure 1. Basic Feed Forward Network.

An alternate approach to handling non-linear problems,
which can also lead to more efficient (and faster) training
systems is based around the use of Radial basis functions
(RBF) [4]. Such artificial neural networks have been shown
to be practical in a number of applications. A typical radial
basis function neural network consists of three layers of
neurons; input, hidden and output. It is a fully connected
perceptron feedforward-like architecture in which the output
units have a linear activation function, Fig 2.

Output
Input

Hidden RBF
Layer

Fig 2. RBF Based Feed Forward Network.

As for the basic feed forward network described above, the
network paradigm is based on the simple intuitive idea that an

arbitrary function y(x) can be approximated as the linear
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superposition of a set of localized basis functions, ¢,{x), by
the following equation,

A

¥ = T w,e,(x) @

where @,(x) is a radially symmetric function, called a

“kernel function”, centered on the ith data point and x is the
corresponding input. A common basis function is usually the
bell-shaped gaussian function given by

b3/}
€

9,;(x) (3)

Other kernel functions that have good theoretical backing
are the thin plate splines, @(x)=x"logx, the multiquadric
and inverse multiquadric that are expressed respectively by
o) =(*+c) and @(x)=(x*+c*)*. The euclidian
distance D ,(x)= "x -c J" between the input vector x and ¢j ,

is determined by

D! =(x-c,) (x—¢) e))

where the vector cj is the center; o'j, the standard

deviation, describes the width or the spreading factor of the
gaussian basis function at node j, and Wij are the second-

layer weights. The network is entirely defined when the
parameter set {¢;,C ,—-{Wf; }} is determined. Each hidden unit

has a localized response, that is, valid responses range within
a limited zone, generally a circular shape, named the
receptive field, ¢ is the size of the receptive field. The
implementation should be adaptive (weights, center location,
widths are all tuned to the data).

In effect, the use of the radial basis functions maps the
input data from the parameter space in which it is presented to
a new space in which the different characteristics are clearly
separated. The separation can now be determined at the
output by a simple linear summation. Training takes place in
muach the same way as it would with a classical multi-layer
fed forward network.

III. CEREBELLAR MODEL ARTICULATION CONTROLLER
(CMAC)

The main aim of using neural network architectures, t.¢.
systems which can be trained from a set of examples and can
generalize these examples to solve problems which have not
been encountered before, is to construct a structure that might
be seen as equivalent to a Response Surface. Thus in
modeling magnetic material properties, the system would be



trying to determine the output response (i.e. H) given a time
sequenice of B values. Thus the question to be answered is
“what will the next value of H be given the next value of B”.
Clearly, as with all computing systems, there are two
solutions. The first involves storing the B-H pairs
representing all possible tracks through the system - this
would require unacceptably large amounts of memory. The
second requires computing the tracks when needed - this
requires considerable amounts of processing and does not
eliminate the need for memory entirely because past history
has to be stored somewhere. The neural network tries to
provide a compromise between these two exiremes by
modeling the response surface implicitly with a limited
amount of data stored and then using an interpolation
approach to finding the new outputs to new inputs. The
CMAUC, first developed by Albus [5], attempts to do much the
same thing. The idea is to minimize the amount of data to be
stored while still being able to retrieve all the points on the
surface. This is achieved by designing a structure which
provides a “contents addressable” memory. This is closely
related to hashing schemes and associative memories in
general. A simple CMAC architecture is shown in Fig. 3.

Hashing structure

output

Fig. 3. Simple CMAC Layout.

Generally, Fig. 3. is a simplification of the process. In
order to provide a real hashing function, the internal layers
consist of randomly connected sets of AND and OR
operators. The circuit shown above hashes a 4 bit number into
a bit representation [6]. The single layer summing neuron at
the output is then trained to adjust the weights such that the
desired function for the given 4 bit input sets is achieved.

Basically, the core of a CMAC is an associative memory
representing, in this case, the hidden layer units, which has
the ability to realize complex nonlinear functions. This
achievement is carried out by a series of sequential mappings
from the set of real values at the input into an N-dimensional
binary associate vector - a set of integers in the associative
memory. The output of the associative memory is connected
to a simple summing circuit to produce the final output. Once
the system has been trained, an input to the network will
cause one or more entries in the associative memory to fire.
The number of entries firing depends on the distribution of
data in the input training set; similar network inputs activate
overlapping neighborhoods inside the network. As a result of
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this, the output of a CMAC is dependent on the previous
history of its inputs and the generalization is due to the
overlapping cells in the input region. This dependence on
previous history is a property which can be made use of in
modeling hysteresis.

Among the numerous benefits of the properties offered by
a CMAC are the following:

1) Local generalization capability;

2) Fast learning without fixation problems, in fact, a
CMAC network is considered as an alternative to
backpropagation multi-layer networks;

3) Incremental training and output superposition
capability ; A CMAC network is an adaptive system
that uses local learning and also permits incremental
training. This enables the net to be retrained on-line to
produce the correct signals for locally changed
conditions;

A. Architecture
Three-layers feed forward network using locally tuned
neurons to achieve a series of sequential mappings:

Conceptual Memory

Association Cells

Input Space
PUtSp Actual Memory
Fig. 4. CMAC Mapping Operations.
SoM-sA—p
Where S={set of all input vectors} =

{$1:8300028, 15 S, = {5,505,
p is the output value;,

A = [the association cell vectors}

When a set of § input vectors are presented to the CMAC,
the transformation M — A is an encoding scheme where
each R-ary variable is converted into a binary variable
according to a specific conversion rule. An output value p is

computed according.

B. Training CMAC Networks
The training process is similar to that used for a
conventional feed forward network, i.e. it i1s a supervised



process and uses error back-propagation to adjust the weights.
In this case, the process uses a learning algorithm, basically a
variant of LMS method, which invelves an adjustable mixture
of fixed basis functions and a linear update rule. This
computationally efficient algorithm can be treated as Gauss-
Seidel iteration of a linear system.

D. Data Representation

The main goal of the process is the transformation of D-
dimensional input vector space (state variables} to K-
dimensional address space (K association coefficients) with a
good generalization or interpolation capability.

A coarse coding scheme is used to represent each state
variable input. In this manner, the latter is quantized into
several discrete regions, called blocks. Areas formed by
quantized regions are called hypercubes. and the quantization
for each variable is shifted by one interval.

For information storage and recovery, each hypercube is
assigned a physical memory address.

The generalization width

The generalization width, ¢, is the width, in one input
dimension, of a single receptive field. It could be thought of
as a quantization resolution. CMAC makes use of a number
of overlapping sets of receptive fields of this width. Hence the
CMAC, by this way, has an input resolution of the
generalization width divided by the number of sets of
receptive fields. This latter number is the number of memory
locations accessed by each input, since each receptive field
corresponds to a virtual memory location and a memory
location is accessed if a receptive field is activated.

E. Memory locations

The number of memory locations required depends on the
degree of nonlinearity of the system being modeled. The total
number of memory locations is a design parameter under our
control. It is the number of memory locations used by the
network. Choosing the size of the physical memory is a
simple task, but choosing the size of the generalization
parameter affects a lot of different things. The overlay
displacement parameters vastly improve the quality of the
CMAC [7]. This influences the shape and size of the additive
modeling region whose "width" is determined by the
generalization parameter.

IV. RBF-CMAC COMBINED MODEL

The techniques of Radial Basis Functions and the CMAC
can be combined in order to take the merits from both. An
RBF is used to preprocess the input data. Each basis function
consists of hidden units covering a region in the input space.
A radial basis function training procedure reduces the number
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of typical data and also enhances the generalization capability
of the hybrid RBF-CMAC network.

V. MODELING HYSTERESIS

Having described an architecture consisting of a RBF
neural network coupled with a CMAC which appears to have
properties which match those needed for modeling magretic
hysteresis effectively, the remainder of this paper will discuss
some initial results.

While the ultimate intention of this work is to be able to
perform the parameter identification necessary for
constructing a Preisach model from experimental
measurements (for which a similar network architecture is
proposed), the work described here concentrates on
demonstrating the effectiveness of the architecture in
generating magnetization characteristics after being trained
on the output of a Preisach model.

The initial hysteresis loops are generated by using a
Preisach model based on the parameters discussed in [8]. The
set of nested characteristics of M plotted against H are shown
in Fig. 5.
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Fig. 5. M-H curves generated from a Preisach model.

The Preisach model was then excited with a damped sine
wave and the M-H curves were generated to be the training
data for the neural network system. The H waveform and the
corresponding M waveform is shown in Fig. 6.



Field H (x 10000 Oe)
Magnetization M (emu/cc)

Fig. 6 . M and H training data.

Part of this data was then used as the training set for the
network. Once the network was trained, it was tested using
the test set. Fig. 7 shows the response to an input to the
trained net of a damped sine wave for H - the “output” is the
expected output from the Preisach model, the “predicted”
output is from the network. The figure also shows the error
expressed as the difference between the M value predicted by
the network and the M value output by the Preisach model.
As can be seen the error is generally considerably less than
10%. Figs. 8 and 9 are zoomed up views of sections of Fig. 7.
A pruning task where one weight is removed at a time has
been carried out to improve the network generalization
performance. Fig. 12 shows that the final prediction error
reaches its minimum when the number of parameters
decreases from 70 to 38. This result give the corresponding
optimal network structure.
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Fig. 7. Output of feed forward network for damped H waveform.

Fig. 10 shows the equivalent predictions from the RBF
network and Fig. 11 gives the predicted nested M-H curves
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produced and these may be compared with those generated
directly from the Preisach model.
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Fig. 8. Zoom of Fig. 7 around time 390.
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Figure 9. Zoom of Fig. 7. around time 630.
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Fig. 10. Output of RBF network for damped H waveform.

IX. CONCLUSIONS

The accurate modeling of hysteresis phenomena in
magnetic devices is critical if analysis systems such as those
based around finite elements are to be effective in the design
process. This paper has discussed the use of a hybrid neural
network strategy based on the combination of a Radial Basis
Function feed forward network and a CMAC. The tests so far
seem to show that such a system may be able of providing an



accurate model of the hysteresis property. It also is both fast
and memory economic - two features which are necessary if
realistic analysis systems are to be considered. The next set of
tests will embed this system within a realistic finite element
model where the input-output behavior is an arbitrary
waveform different from the training ones. The systems
performance will then be further examined.
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Fig. 11. M-H Curves from RBF network.
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Fig. 12. M-H Curves from RBF network
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