Application of Parallel Processing
to a Surface Patch / Wire Junction EFIE Code

L. C. Russell, J. W. Rockway
Naval Ocean Systems Center
San Diego, California 92152

ABSTRACT

A surface patch | wire junction EFIE method of moment algorithm, JUNCTION, developed
by the University of Houston has been implemented in a transputer based parallel processing
environment installed in a personal computer. This paper addresses transputer hardware and
software options, the JUNCTION algorithm, techniques for parallelizing matrix analysis algo-
rithms, and performance results. The transputer array was found to provide a flexible, low-cost,
high performance desktop computing environment for method of moment analysis.

1.0 INTRODUCTION

This paper presents the application of parallel processing techniques to an existing compu-
tational electromagnetic (CEM) code. The goal was to demonstrate that high performance com-
puting (HPC) can improve the utility and efficiency of computational techniques used in
electromagnetic ship analysis [Li, 1988]. The parallel processing platform was an array of four
transputers on a board inside an IBM-compatible PC. The transputers were run using the ParaSoft
EXPRESS operating environment [ParaSoft, 1990]. This operating environment was chosen to
allow portability of the code to other HPC platforms and minimize the number of required pro-
gramming changes to the CEM code. The selected CEM code was the method of moment (MoM)
algorithm JUNCTION developed by the University of Houston [Hwu et al, 1988; Wilton et al,
1988].

2.0 PARALLEL PROCESSING

The concept of parallel processing has been around for a long time but only recently was its
utility generally recognized. By 1986 more than a dozen companies were either selling or in the
process of building parallel processors [Tazelaar, 1988].

2.1 Transputer hardware

The hardware platform chosen was an array of four transputers on a motherboard which could
be installed inside a PC. This decision was based on the low cost, ease of use, and flexibility of a
transputer based system. Transputer systems provide an inexpensive entry into the world of parallel
processing. For this entry level application a decision was made to purchase only four floating
point transputer modules (TRAMs) each with one Megabyte of external RAM. These size I TRAMs
are an industry standard and provide sufficient memory for most applications at a reasonable cost
and in a compact package. The T800 transputer used has a peak performance of 1.5 Mflops.

2.2 Transputer Software

There are several different ways to program an array of transputers. Each method has
trade-offs in portability, performance, and ease of use. The parallel language, Occam, was developed
concurrently with the transputer. Parallel versions of high level languages such as Fortran, C, Pascal,
and Modula 2 can be obtained. The parallel operating environment EXPRESS (ParaSoft Corpo-
ration) is available for transputer systems.

48

2.2.1 Occam

There are a number of advantages to using Occam for programming a transputer system.
Since Occam was developed simultaneously with the transputer, it is one of the few languages
designed for concurrency. Occam has the performance and efficiency of assembly language. Occam
can be used as a harness to link modules written in other industry standard languages. Its other
features include: well implemented timing capabilities, straightforward control of process sche-
duling, and a high level of structure.

The main disadvantage to using Occam is that programs written in Occam are not portable
toother parallel computers. Existing codes written inother languages need to be completely recoded.
Occam works only with the transputer. Other disadvantages are that Occam does not support many
features of other high level languages (norecursion or dynamic memory allocation), use of itrequires
learning a new language, and Occam may not be supported in the future. In the trade-off space
(portability versus performance versus ease of use) Occam scores high only in performance.

2.2.2 High Level Languages

The advantage of using a parallel version of a high level language such as Fortran, C, Pascal,
or Modula 2 is that one can use a language with which one is already familiar. All that is required
is to learn the parallel extensions. Existing sequential code can be ported over.

There are, however, a number of disadvantages to using a parallel version of a high level
language. Programming an array of transputers requires the user to develop both a host program
and a node program. The host program runs on the host processor and handles I/O calls and manages
the other processors. The node program runs on all the other processors and does the bulk of the
computations. The user is required to maintain two programs instead of the usual one program.
This can make program development and maintenance somewhat complex. Performing I/O, making
system calls, and measuring timing can be very difficult. Debuggers for parallel versions of high
level languages are starting to appear, but they are not widely available. Debugging parallel pro-
grams is very difficult. In addition to all this, parallel versions of high level languages do not offer
the performance that one can get from Occam.

2.2.3 ParaSoft EXPRESS

Parallel operating environments such as ParaSoft’s EXPRESS allow the user the convenience
of using a familiar high level language while mitigating some of the disadvantages to parallel high
level languages which were mentioned in the previous section. EXPRESS is based on the CUBIX
programming model which was developed at CalTech. EXPRESS is available for both Fortran and
C. There is no need to develop both a host and node program. Instead only one program (which
runs on all processors) needs to be developed and maintained. EXPRESS does notinclude a compiler
so one of the parallel high level language compilers mentioned above is still needed to compile and
link the code. During linking the EXPRESS library is linked into the user’s source code. The
EXPRESS library provides simple Fortran or C language function calls to handle I/O and system
calls. EXPRESS also provides timing capabilities, a source level debugger, and a performance
monitor. The number of processors being used does not have to be hardwired into the code. Instead
this is specified at runtime by a switch in the run command. In addition, EXPRESS is available for
a wide variety of parallel machines, not just the transputer. Currently EXPRESS is available for:
the multi-headed IBM 3090 (AIX) and the multi-headed CRAY (UNICOS) mainframes; the Intel
iPSC 2 and iPSC 860; the nCUBE 1 and 2; PC, MAC, and SUN hosts for transputers; and the IBM
RS/6000, Silicon Graphics, and SUN workstations. All this leads to very portable source code.

49

The only significant disadvantage to EXPRESS is that it possibly degrades system per-
formance to some extent. However, this disadvantage is more than offset by the advantage of having
portable code. For these reasons EXPRESS by ParaSoft was chosen for the operating environment.
Portability was the key feature since the ultimate goal of this effort was to run the code on a high
performance computer. The language chosen was Fortran since this is the principal language of
the JUNCTION method of moments code. For obvious reasons, it was desirable to make as few
changes to the existing code as possible.

3.0 The JUNCTION METHOD OF MOMENTS CODE

The JUNCTION computer code invokes the method of moments to solve a coupled electric
field integral equation (EFIE) for the currents induced on an arbitrary configuration of perfectly
conducting bodies and wires [Wilton et al, 1989]. There are three principal advantages to the
JUNCTION formulation. First, the EFIE formulation for the surfaces of bodies, in contrast to the
magnetic field integral equation (MFIE), applies toopen bodies. Second, JUNCTION allows voltage
and load conditions to be easily specified at terminals defined on the structure. Third, the triangular
patches of JUNCTION are the simplest planar surfaces which can be used to model arbitrary surfaces
and boundaries, and triangular patches permit patch densities to be varied locally so as to model a
rapidly varying current distribution.

The method of moments is a numerical procedure for solving field integral equations [Har-
rington, 1968]. Basis functions are chosen to represent the unknown currents. Testing functions
are chosen to enforce the integral equation on the surface of the conducting structure. With the
choice of basis and testing functions a matrix approximating the integral equation is derived. In
JUNCTION a system of N linear equations results, where N = N + Ny + Ny

21 121 2¥1] [u* (E®]
iz 2" Z%1] | ™| = | M
%1 Z™ 12" [’] [E]

where Z is the impedance matrix, / is the current vector, and E is the excitation vector. The
superscripts are B for body elements, W for wire elements, and J for junctions between wires and
bodies. The analytical expressions for each of the individual submatrices are different. Solution
of the linear system of equations yields the set of unknown coefficients used in the representation
of the surface, wire, and junction currents. Once these currents are known, the scattered field or
any other electromagnetic quantity of interest may be determined.

4.0 IMPLEMENTATION OF SEQUENTIAL PROGRAM

The first step in parallelizing an existing program is to verify the sequential version of the
program. This is done by running the program on a serial computer. Once this has been successfully
done, the next step is to get the program to run on a single processor on the parallel computer. This
is necessary to eliminate any problems caused by compiler differences between the serial compiler
and the paralle] compiler and also to "check out” the hardware. Only after this has been completed
can the parallelization of the program be considered.

50

JUNCTION was broken into four separate programs: DATGN, GEOMETRY, CURRENT,
and FIELD. DATGN creates input data set files. GEOMETRY calculates the geometrical
parameters. CURRENT computes the currents and impedance. FIELD computes charges, near
fields, far fields, radar cross sections, and power gain. The computationally intensive programs are
CURRENT and FIELD. This paper is concerned with the parallelizing of CURRENT.

From a computational standpoint CURRENT consists of filling the impedance matrix and
the excitation vector, and then solving for the current vector. The current vector gives the currents
on the bodies, wires and junctions. The methods used are standard matrix manipulation techniques.
Once the matrix is filled, Gaussian elimination is performed using LU decomposition with partial
pivoting to factor the matrix. Finally, the current vector is solved for by using backward and forward
substitution. The library subroutines used are the LINPACK routines CGEFA and CGESL
[Dongarra et al, 1979]. CGEFA factors a general complex matrix. CGESL solves a complex matrix
equation using the output from CGEFA.

5.0 PARALLEL MATRIX FACTOR AND SOLVE
5.1 Parallel LINPACK

When this effort was initiated, general parallel versions of the LINPACK subroutines were
not available. This is because parallel subroutines are by their nature very machine specific and
one of the goals of the LINPACK project was for the subroutines to be machine independent.

On sequential computers the number of computations required to factor a matrix into a product
of triangular matrices is of the order (n”) where n is the dimension of the matrix. In comparison,
the number of computations required for the triangular solution are of the order (n*). Because of
this, unless multiple solutions are required, most effort has focused on optimizing the factorization
algorithm.

On parallel computers good efficiency is more difficult to obtain for matrix solving compared
to matrix factoring. This is because much more interprocessor communication is required during
solving. Solving is inherently a finer grain process than factoring. Various parallel algorithms have
been proposed. Each one has its advantages and disadvantages which are dependent on the number
of processors being used, the size of the problem being solved, and the relative costof communication
and computation.

The matrix columns were distributed onto the processors using an interleaving technique
known as column wrap mapping. Column wrap mapping has good load balancing properties and
gives excellent performance when doing LU decomposition.

Intel Corporation provided the source code for Intel’s parallel versions of DGEFA and DGESL
from LINPACK. DGEFA and DGESL are double precision non-complex versions of CGEFA and
CGESL, respectively. Included were two different matrix solving routines: a cyclic version and a
wavefront version of DGESL. The differences between these versions are described below. These
routines were all developed for Intel’s iPSC parallel computer so a number of modifications were
needed to implement them under EXPRESS on the transputer array. The matrix factoring routine
was straightforward to parallelize and provided very high efficiencies.

The difficult problem was the solution of the lower triangular linear system
Lx=b,

51

where L is a lower triangular matrix of order n, b is a known vector of dimension #, and x is the
unknown solution vector of dimension #n. The sequential version of LINPACK solves this by
forward substitution using the following doubly nested loop:

forj=1ton

7
fori=j+lton
b;=b;—x,L;

There are a number of ways to parallelize this problem on a distributed memory parallel
computer. Several algorithms have been developed. Two of the most popular are the wavefron:
algorithm and the cyclic algorithm [Heath et al, 1988). These algorithms assume the matrix is
column wrap mapped onto the processors.

The wavefront algorithm breaks the updating of b into segments and pipelines the segments
through the processors in a wavefront fashion. The n-vector z is used to accumulate the updates of
b so that the components of b remain distributed among the processors. The size of the circulated
segments is an adjustable parameter that controls the granularity of the algorithm and therefore
affects performance. The optimal value of the segment size depends on the characteristics of the
hardware.

The wavefront algorithm is written in pseudo-code as:
for j € mycols
for k=1 to # segments
receive segment
if k=1 then
segment = segment - {z;}
for z; € segment
L=z+xL;
if Isegmentl > O then
send segment 1o processor map(j + 1)

The cyclic algorithm is similar to the wavefront algorithm in that they both send a segment
z between processors. However, the cyclic algorithm circulates a single segment of the fixed size
p-1, where p is the number of processors. The name cyclic comes from the segment cycling through
all other processors before returning to a given processor. The updates computed by the processor
while the segment is circulating elsewhere are stored in the vector ¢. The cyclic algorithm is written
in pseudo-code as:

for j € mycols
receive segment
segment = segment - {z;}
for z; € segment
Z,- =2z + ti +xJ.Lu

Zivp1 T hapat Xl

B2

segment = segment \J{z;,,_,}
send segment to processor map{j+1)
fori=j+pton

t,- = t,' +fou

Theoretical analysis shows that the cyclic algorithm performs best on a small number of
processors whereas the wavefront algorithm performs best on a large number of processors.

5.2 Implementation of parallel LINPACK under EXPRESS

A number of modifications were needed to the Intel parallel LINPACK routines in order to
implement them on the transputer array operating under ParaSoft EXPRESS. These modifications
fell into three categories:

1. converting double precision variables to complex variables,

2. using complex LINPACK routines instead of the equivalent double precision
LINPACK routines,

3. using EXPRESS communication functions/routines instead of tPSC communi-
cation functions/routines.

5.3 Results

Performance measurements were made of both the parallel matrix factor routine and the two
parallel matrix solve routines. Timings were made using one, two, three and four processors. The
timing measurements were converted to the standard performance measurement parameters,
speed-up and efficiency. Speed-up is the ratio of the execution time of the algorithm on a single
processor to the execution time of the parallel algorithm on the » processors. Efficiency is the
speed-up divided by » and expressed as percent.

Due to memory limitations, examples with more than 200 unknowns could not be run on a
single transputer. Several sample problems were developed to test out the parallel factor and solve
routines. The four sample problems had the following number of unknowns: 104, 116, 155, and
189.

5.3.1 Factor

Figure 5-1 shows the timing results on the parallel version of CGEFA for the four sample
problems. Figure 5-2 shows speed-up and figure 5-3 shows efficiency. The important issue is that
as the number of unknowns increases the parallel matrix factoring routine becomes more efficient.
This is expected since small problems do not achieve good load balancing and cannot benefit greatly
from parallel computation. An efficiency of over 90% is considered very good.

53

40
—-—
: / 1 TRANSPUTER
35 4
——
/ 2 TRANSPUTERS
30
——
/ 3 TRANSPUTERS
é 25 4 =
] /./ 4 TRANSPUTERS
;] 20 / —
g 15 < //
|
10 / e s
5 — ‘é —
0
100 120 140 160 180 200
NUMBER OF UNKNOWNS
Figure 5-1. Timing for parallel matrix factoring routine.
4
—
_ﬁ,a—ﬂ""’fa 1 TRANSPUTER
3.5 — ——
] 2 TRANSPUTERS
E/? ——
3 3 TRANSPUTERS
—
| e | -
5 — | 4 TRANSPUTERS
2 N e +
et
1.5
1 += - - -
100 120 140 160 180 200

NUMBER OF UNKNOWNS

Figure 5-2. Speedup achieved for parallel matrix factoring routine.

54

100 Tw—m -

1 TRANSPUTER

95 2 TRANSPUTERS

|
-~ P

3 TRANSPUTERS

%0 L / ;/ 2 TRANSPUTERS

85 / =

E/%

EFFICENCY, PERCENT

S

80

75
100 120 140 160 180 200

NUMBER OF UNKNOWNS

Figure 5-3. Efficiency achieved for parallel matrix factoring routine.

5.3.2 Solve

The performance of the two parallel matrix solve routines were measured for all the example
problems. The results are shown here for the largest problem, the one with 189 unknowns. Table
5-1 shows the results for the cyclic algorithm.

Table 5-1. Performance results for cyclic algorithm for 189 unknowns.

Number of Time, Speedup Efficiency
Processors seconds

1 0.621 1.00 100%

2 0.367 1.69 84.5%

3 0.257 242 80.7%

4 0.207 3.00 750% |

The performance results for the wavefront algorithm are complicated by the presence of the
adjustable segment size parameter. This segment size parameter can range from 1 to the number
of unknowns. Table 5-2 shows the optimal performance segment size and time. The optimal
performance segment size is a function of the number of processors (as well as the number of
unknowns). In addition, by comparing the timing results for the wavefront algorithm with the results
for the cyclic algorithm it can be seen that even with the optimum segment size the performance
for the wavefront algorithm is much worse than the cyclic algorithm. For these two reasons the
wavefront algorithm was rejected for use on the size of problem which could be run on the four

55

processor transputer array. However, it must be noted that the performance results could turn out
to be very different on a high performance computer with many more processors running larger
problems.

Table 5-2. Performance results for wavefront algorithm for 189 unknowns.

Number of Optimal Time, I

Processors segment size seconds
95 0.741
72 0.555
34 0.448
24 0.380

6.0 PARALLEL MATRIX FILLING

Developing a highly efficient general routine for parallel matrix filling was much more dif-
ficult in comparison to the work required to parallelize the matrix factor and solve routines. This
was due to several reasons: the large variety of problem geometries being solved, shared calculations
between matrix columns, memory limitations, and concurrent filling of the excitation vector.

6.1 Sequential matrix filling

In JUNCTION the columns of the matrix correspond to source points on the structure. The
rows of the matrix correspond to observation points on the structure. The body columns/rows come
before the wire columns/rows, but otherwise the ordering of the columns/rows depends on how the
problem was specified in the input data portion of the code. The junction points are scattered within
the wire portion of the matrix. Wire columns correspond to nodes on the wires whereas body
columns correspond to sides of triangular patches on the surfaces. A junction is a node on a wire,
hence its location is in the wire portion of the matrix.

6.2 Column mapping techniques

There are a wide variety of techniques which can be used to map the columns of the matrix
onto the processors. A column wrap mapping technique was used for matrix factoring and solving
as described in the previous chapter,

It quickly became apparent that column wrap mapping was not necessarily the best method
to use for parallelizing the matrix filling portion of the code. Adjacent columns of the matrix are
often assoctated with each other. For bodies adjacent columns are usually either on the same face
or on an attached face. For wires adjacent columns often refer to nodes which are joined by the
same segment. In JUNCTION calculations are made with respect to faces and segments, not edges
and nodes. This avoids duplication of work in a serial computation. Alternative methods for
mapping the columns onto the processors were needed. (Note: mapping the rows onto the pro-
cessors, instead of the columns, was never considered since matrix factoring required the columns
to be already mapped onto the processors).

56

Alternative mapping techniques were devised and evaluated. The techniques and performance
results are described below in the section on structural dependencies. It was found that using a
different mapping technique to fill the matrix did not compromise the output from matrix solving,
The only effect was to scramble the output vector. The output vector is easily and rapidly
unscrambled at the end of the matrix solve routines. Unscrambling the output vector at the end is
much faster than unscrambling the matrix before the matrix factor routine, since much less inter-
processor communication is required for the former.

6.3 Structural dependencies

The performance of the parallel matrix filling algorithm was found to be very dependent on
the structure being analyzed. The first types of problems analyzed were for homogeneous structures.
Homogeneous structures are defined as having either all body elements or all wire elements. Next,
heterogeneous structures were evaluated. Heterogeneous structures are defined as having a mixture
of body, wire, and junction elements.

6.3.1 Homogeneous structures

Six types of structures were considered: straight wires, cylinders, plates, cones, disks, or
spheres. The performance of the parallel matrix filling routines was evaluated for homogeneous
problems made up of each of these types of structures. Two column mapping techniques were
compared for each structure type. The two techniques used were column wrap mapping and column
block mapping. Column wrap mapping consists of interleaving the columns onto the processors.
It is described in detail in Section 6.2. Column block mapping consists of distributing the columns
onto the processors using contiguous blocks of columns rather than individual columns. As an
example, if 4 processors were being used to fill a matrix with 100 columns, using column block
mapping would mean that the first processor would fill the first 25 columns, the second processor
would fill the second 25 columns, and so on.

Four sample problems were developed for each structure type. The number of unknowns
ranged from 40 to 200. Each sample problem was run on both a single transputer and four transputers.
Measurements were made of both matrix filling time and matrix solving time for both column wrap
mapping and column block mapping.

Table 6-3 shows the measured times and calculated efficiencies for matrix filling for the
different structures using wrap and block mapping.

For a single processor it is seen that an all wire homogeneous matrix takes longer to fill than
an all body homogeneous matrix of the same size. On average an all wire matrix took about 38%
longer to fill than the same size all body matrix. Improvements are being been made in JUNCTION
to improve the speed of calculation for wires. The cylinder, plate, cone, disk and sphere matrices
all took about the same time to fill a given size matrix.

When the sample problems were run on four processors, distinct structural dependencies
emerged for filling times and efficiencies. Itis important to note that column block mapping always
performed better than column wrap mapping. Column block mapping filling efficiencies were
almost always greater than 70%, whereas column wrap mapping filling efficiencies were always
between 40 and 60%. It is also interesting to note that the different structures performed differently
in filling efficiencies. For column wrap mapping wires performed best followed by plates, cones,
spheres, disks, and, then, cylinders. For column block mapping wires again performed best followed
by cylinders, plates, cones, spheres, and, then, disks. These results are due to the nature of the
physical connectivity of the various structures and how their elements are distributed to the columns

57

Table 6-3. Matrix filling times/efficiencies for various structures.

Structure Number of 1 Processor 4 Processors
Type Unknowns Wrap Mapping Block Mapping
TIME,sec TIME EFFIC TIME EFFIC
WIRE 47 7.38 3.32 55.6% 1.97 93.7%
o7 30.78 14.06 54.7% 8.08 95.2%
147 70.51 31.54 55.9% 17.95 98.2%
197 126.06 56.91 55.4% 32.22 97.8%
CYLINDER 56 8.56 497 43.1% 2.80 76.4%
104 27.04 15.78 42.8% 7.94 85.1%
152 55.95 32.69 42 8% 15.68 89.2%
200 95.17 55.62 42.8% 25.99 91.5%
PLATE 40 5.12 2.66 48.1% 1.66 T7.1%
96 25.11 12.69 49.5% 7.88 79.7%
133 45.7 2595 44.0% 14.01 81.5%
176 76.87 39.15 49.1% 2192 87.7%
CONE 52 7.15 4.08 43.8% 2.54 70.4%
100 24.09 13.88 43.4% 7.36 R1.8%
155 55.85 29.12 47.9% 16.56 84.3%
200 90.52 46.58 48.6% 25.31 89.4%
DISK 49 6.60 3.77 43.8% 2.77 59.6%
98 25.19 13.7 46.0% 10.42 60.4%
150 55.65 29.84 46.6% 20.05 69.4%
200 97.01 53.12 45.7% 34.33 70.6%
SPHERE 60 9.06 4.82 47 0% 3.23 70.1%
%0 19.75 10.65 46.4% 6.85 72.1%
168 66.56 37.98 43.8% 20.27 82.1%
198 91.84 4799 47 8% 28.96 79.3%

of the matrix. Again, in JUNCTION calculations are made with respect to faces and segments. To
avoid duplication of computation on the processors it is advantageous to have all the edge com-
putations for a given face to be on the same processor. For a wire both nodes of a given segment
should be on the same processor.

Table 6-4 shows the measured times and calculated efficiency for matrix factoring and solving
for the different structures.

In matrix factoring and solving there are no structural dependencies. It should also be noted
that as the number of unknowns increases, the factoring and solving efficiencies increase. For 200
unknowns factoring and solving efficiency is greater than 95% percent. Matrix filling efficiency
also increases as the number of unknowns increases.

58

Table 6-4. Matrix factor and solve times/efficiency for various structures.

Structure Number of 1 Processor 4 Processors

Type Unknowns TIME,sec TIME { EFFIC
WIRE 47 0.66 0.22 75.0%
97 534 1.48 90.2%
147 18.09 4.81 94.0%
197 42.94 11.19 95.9%
CYLINDER 56 1.13 0.35 80.7%
104 6.70 1.81 92.5%
152 20.22 534 94.7%
200 45.36 11.79 96.2%
PLATE 40 0.42 0.15 70.0%

§ 96 5.12 144 | 88.9% |
133 13.35 3.58 93.2%
176 30.55 8.04 95.0%
CONE 52 0.92 0.29 79.3%
100 597 1.63 91.6%
155 21.45 5.63 95.2%
200 4541 11.79 96.3%

DISK 49 0.78 0.25 78.0% |
08 5.60 154 90.9%
150 19.48 5.11 95.3%
200 45.32 11.78 96.2%
SPHERE 60 1.37 0.41 83.5%
90 438 1.21 90.5%
168 27.10 7.11 95.3%
198 44.02 11.41 96.5%

6.3.2 Heterogeneous structures

The heterogeneous structures that were evaluated consisted mostly of square plates with
numerous attached wires. This allowed the evaluation of matrices with various numbers of body,
wire, and junction columns.

After evaluating a large number of heterogeneous problems a number of observations were
made. These observations are summarized below:

» The junction columns are scattered within the wire portion of the matrix. The

distribution of the junction columns depends on how the problem is initially spe-
cified. Fortunately, it is fairly straightforward to convert from junction number to

matrix column number,

» A junction can connect to between one and six faces on a body. A quirk of
JUNCTION is that the code will only recognize a maximum of one junction attached
to a given face.

59

» To achieve maximum efficiency the filling of a junction column should be done by
the same processor which is filling the columns associated with the faces to which
the junction is attached, since a large part of the calculations are in common. The
problem is that the associated body columns are sometimes scattered all through
the matrix.

« The time to fill a matrix is a function of many factors including: relative/absolute
number of wire, body and junction unknowns; number of separate wires; number
of segments on each wire; locations of wires and junctions relative to a body; number
of faces connected to each junction.

« Developing a general method for balancing the work load and achieving optimum
efficiency for a heterogeneous problem is very complicated, even for the simple
problems studied involving a single plate with various attached wires. If the choice
is between block and wrap mapping, block mapping gives better results. (For the
problems studied, block mapping was 62 - 93% efficient, whereas wrap mapping
was 41 - 52% efficient).

Based on the above observations a decision was made to implement two additional column mapping
techniques. Both techniques are modifications of the standard block mapping technique.

The first technique is called random mapping. Random mapping is block mapping with one
twist: instead of the junction columns staying grouped with the wire columns, the junction columns
are filled by the processors which are filling the body columns of the matrix. The columns are
redistributed to keep a balanced number of columns on each processor. As an example, suppose a
matrix has 50 body columns, 50 wire columns, and 6 junctions, and the problem is being run on 4
processors. Under standard column block mapping the first 25 body columns would be filled by
the first processor, the second 25 body columns would be filled by the second processor, the first
25 wire columns would be filled by the third processor, and the second 25 wire columns would be
filled by the fourth processor. The junction columns, being wire columns also, would be distributed
on the third and fourth processors. Under random mapping the six junction columns would first
be distributed to the first two processors in the following manner: junction 1 column to first pro-
cessor, junction 2 column to second processor, junction 3 column to first processor, junction 4
column to second processor, and so on. The first and second processors would each have 3 junction
columns. Block processing would then be used to distribute the body and remaining wire columns,
so that each processor would finish up with 25 total columns as before.

The second technique is called Ist order mapping. This is similar to the random mapping
described above except now the junction columns are assigned to the body processors using
knowledge of which processor will be calculating the majority of columns associated with the faces
to which that junction is attached. This could potentially cause more junction columns to end up
on one of the body processors than another, but the improvement in performance could be significant.

An analysis of matrix filling efficiency was run on four processors for the problem of a square
plate with 8 wires attached to it. The problem involved 96 body unknowns, 96 wire unknowns,
and 8 junctions. The four different column mapping techniques were used. The results are shown
in table 6-5.

The results show that random mapping only gives a slight improvement over block mapping,
but 1st order mapping gives a significant improvement over block mapping.

Table 6-5. Efficiencies of various mapping techniques.

I Mapping Technique Efficiency _I

WRAP 40.5%
BLOCK 61.8%
RANDOM 63.9%
1ST ORDER 76.9% I

7.0 RESULTS AND CONCLUSIONS

7.1 Performance Comparisons

Comparisons were run for the micro-Vax, a single transputer, the four transputer array, and
the Convex Model C-220. The Convex is a mini-supercomputer which can do some automatic
vectorization.

Sample data sets were generated for both bodies and wires. Eight body data sets were generated
with 104, 152, 200, 248, 296, 356, 404, and 452 unknowns. Eight wire data sets were generated
with 47, 97, 147, 197, 247, 297, 347, and 397 unknowns. For each data set and each hardware
platform timing measurements were made for both matrix filling and matrix factoring and solving.
On the four transputer array the data sets were run using both column wrap mapping and column
block mapping. On the Convex measurements were made of both CPU time and actual elapsed
time. At the time the measurements were made there were 13 other users on the Convex and elapsed
time averaged about 3.5 times longer than CPU time. This should be kept in mind when making
comparisons between the various hardware platforms. Results are shown in tables 7-1 through 7-4.

Table 7-1. Time to fill all-body matrix, seconds.

Number COMPUTER PLATFORM
of Micro-Vax | 1 Xputer 4 Xputer CONVEX
Unknowns Wrap Map | Block Map CPU Elapsed
104 73.7 26.6 16.7 8.8 5.1 20
152 151.7 55.0 334 16.5 10.7 26
200 2575 93.8 56.1 26.6 18.3 69
248 394.0 854 39.7 279 105
296 5559 120.1 549 394 145
356 801.6 172.8 78.0 56.9 201
404 1027.8 2214 99.1 73.1 260
452 1282.3 276.1 1229 91.4 329

61

Table 7-2. Time to factor & solve all-body matrix, seconds.

Number COMPUTER PLATFORM
of Micro-Vax | 1 Xputer 4 Xputer CONVEX
Unknowns Wrap Map | Block Map CPU Elapsed
104 15.1 6.7 1.8 1.8 0.5 2
152 45.5 20.2 5.3 53 1.3 4
200 101.8 42.7 11.7 11.8 2.8 7
248 191.9 219 22.1 5.1 32
296 3237 36.9 37.1 8.5 30
356 5599 63.6 63.9 14.5 55
404 814.3 92.5 92.8 21.0 79
452 1137.2 129.0 129.4 29.1 102
Table 7-3. Time to fill all-wire matrix, seconds.
Number COMPUTER PLATFORM
of Micro-Vax | 1 Xputer 4 Xputer CONVEX
Unknowns . Wrap Map | Block Map CPU Elapsed

47 19.1 7.3 33 20 0.9 1
97 78.9 30.6 14.0 8.0 3.6 9
147 180.5 70.1 314 17.9 8.3 23
197 3224 1254 56.7 32.0 14.9 54
247 505.3 88.0 49.6 234 112
297 729.3 127.8 71.9 33.8 154
347 993.7 173.1 97.2 46.0 166
i 397 1302.1 227.8 127.8 60.2 172

The results show that the micro-Vax fills a wire matrix 32% slower than it fills a body matrix
of the same size. Using column wrap mapping the four transputers fill a wire matrix 8% slower
than they do a body matrix. In contrast, the Convex fills a wire matrix 15% faster than it does a
body matrix! This may be due to the Convex’s automatic vectorizing abilities. For comparison, a
single transputer fills a wire matrix 36% slower than it fills a body matrix. The 8% figure for the
four transputers can be accounted for by the fact that the wire filling efficiency (55%) is about 28%
greater than the body filling efficiency (40%) for these problems and 28+8=36. The conclusion
here is that for the JUNCTION code, sequentially speaking, wire filling takes about one third longer
than body filling.

Some of the comparison data is displayed graphically in figures 7-1 through 7-3. The data
is for an all-body matrix. The figures show comparisons between the four transputer array, the
Convex (CPU time), and projected results for a sixteen transputer array. A four transputer array
with 1 Megabyte of RAM per node can solve problems with up to 450 unknowns. With a sixteen
transputer array problems with more than 900 unknowns could be solved.

62

Table 7-4. Time to factor & solve all-wire matrix, seconds.

Number COMPUTER PLATFORM
of Micro-Vax | 1 Xputer 4 Xputer CONVEX
Unknowns | Wrap Map | Block Map CPU Elapsed
47 1.6 0.7 0.2 0.2 0.1 0
97 12.3 53 1.5 1.5 04 1
147 41.2 18.1 4.8 4.8 1.2 5
197 97.4 429 11.1 11.1 2.7 10
247 189.9 21.5 215 5.0 26
297 327.8 37.0 37.0 8.6 35
347 520.2 58.6 58.6 134 39
397 776.0 874 87.4 19.8 57

The plots show that a sixteen transputer array would perform better than the Convex for filling
the matrix and almost as good as the Convex for factoring and solving the matrix (Note: a sixteen
transputer array, including the motherboard, would cost about $15K). However, no attempt was
made to improve the vectorization of JUNCTION for a more efficient computation on the Convex.
It is envisioned that considerable improvement could be made in the Convex times for factoring

and solving of the matrix.

1000
’///
pdVa
g e
L~
8 A
% 100 a:]
’_/ I .
Ii? - 1 //
= o I
(/* //
/"/ //
o /.// P
100 200 300 400 500600 8001000

—— 4 TRANSPUTERS —— CONVEX(CPU)

NUMBER OF BODY UNKNOWNS

~=== 16 TRANSPUTERS

Figure 7-1. Matrix filling time comparisons, block mapping.

63

10000
2 1000 —
=z
(@]
(8
Ld
73] A‘//
W i A
2 100 / 4
- = —
//'“ Z
= y
/,./ /
10]
100 200 300 400 500600 8001000
NUMBER OF BODY UNKNOWNS
-+~ 4 TRANSPUTERS -%— CONVEX(CPU) = ——— 16 TRANSPUTERS

Figure 7-2. Matrix factoring and solving time comparisons.

10000
§ 1000 z/
O oz
v A W v
9 AT 7 A
. L~
i)
> //
Z 100 e -
——=
/ l/
10 -i-/)/ /

100 200 300 400500600 8001000
NUMBER OF BODY UNKNOWNS

—+— 4 TRANSPUTERS —%— CONVEX{CFU) —— 16 TRANSPUTERS

Figure 7-3. Total computation time comparisons, block mapping.

64

7.2 Observations

In the course of this effort anumber of observations were made regarding transputers, ParaSoft
EXPRESS, and parallel processing in general:

» A transputer array is an inexpensive, flexible parallel processing platform. An
array of four transputer modules, each with 1 Megabyte of RAM, plus the PC
motherboard cost less than $5K. The transputer array is very flexible since the
number of processors can be easily expanded (just plug more modules in the sockets)
and any Fortran or C code which runs on the PC can be modified to run on the
transputer array.

» ParaSoft EXPRESS has been of great utility. Without EXPRESS it would have
been very difficult to make the progress that was made in parallelizing the code. In
addition, major modifications to the existing code would have been required, if not
a complete rewriting of the code. EXPRESS will allow the porting of the code to
another computer platform to be much more direct.

* Running an existing program on one transputer is very straightforward using
EXPRESS. By adding just a few lines of code, then recompiling using the parallel
compiler, and linking the object files to EXPRESS, an executable module which
runs on a single transputer can be created for virmally any Fortran program which
runs on the PC.

« The effort required to parallelize a code is algorithm dependent. Some algorithms
can be parallelized just by adding a couple of lines of code. Other algorithms require
extensive restructuring. Still other algorithms are not suited for implementation on
a parallel computer and must be left as sequential code. It is not always obvious
beforehand which algorithms will be efficient to parallelize and which won’t.

» The optimal parallel code can be dependent on the number and type of processors
as well as the size of the problem being solved. This was shown to be the case with
the matrix solve algorithms. Two algorithms were tested: a cyclic implementation
and a wavefront implementation. Although the cyclic implementation outper-
formed the wavefront implementation for the 4-transputer array, the literature
suggests that the wavefront implementation will be the best performer for a
massively parallel computing platform solving larger problems.

8.0 THE FUTURE

The state-of-the-art technology in the area of parallel processing changes monthly both for
hardware platforms and software tools. The transputers used for this effort will soon be outdated,
replaced by faster and more flexible processing units [Pountain, 1990]. New features are contin-
uously being added to EXPRESS to make it more powerful and adaptable.

8.1 Future Hardware

The big news in the world of transputers is the development of the T9OO(. This next generation
processor is being developed by the same company, INMOS, which did the original pioneering
work on the development of the transputer [INMOS, 1988]. According to the manufacturer the key
features of the T9000 are "a high performance pipelined superscalar processor and major support
for multiprocessing applications. Peak performance will be more than 150 MIPS and 20 MFLOPS,
representing a major advance in parallel computing and high speed communications...The design
goals for T9000 were to enhance the transputer’s position as the premier multiprocessing micro-

65

processor, and to establish a new standard in single processor performance, while maintaining
compatibility with existing transputer products.” Of course, there will be some delay between the
release of the T9000 and the development of compatible motherboards and software.

8.2 Future Software

A great deal of effort is going into developing programming software for parallel computing
environments. This software includes parallel compilers, debuggers, performance analysis tools,
visualization tools, dynamic load balancing tools, and automatic parallelization tools. Most of the
presently existing software in these areas are very crude.

ParaSoft is in the process of improving EXPRESS. New tools which are being added include
VTOOL, ASPAR, and EXDIST. VTOOL will allow memory access visualization. ASPAR pro-
vides automatic parallelization of sequential C programs. EXDIST will provide dynamic load
balancing. ParaSoft’s ultimate goal is to run EXPRESS within a heterogeneous parallel processing
environment - known as a "meta" computer. A "meta" computer is made up of a number of
architecturally different computers which are networked together and perform as a single entity.

REFERENCES

Dongarra, J.J., C.B. Moler, J.R. Bunch, and G.W. Stewart. 1979. LINPACK User's Guide, SIAM,
Philadelphia, PA.

Harrington, R.F. 1968. Field Computation by Moment Methods, The Macmillan Company, NY.

Heath, M.T., and C.H. Romine. 1988. "Parallel Solution of Triangular Systems on Distrib-
uted-Memory Multiprocessors,” STAM Journal of Scientific and Statistical Computing, Volume
9, Number 3, May.

Hwu, S.U., and D. R. Wilion. 1988. "Electromagnetic Scattering and Radiation by Arbitrary
Configurations of Conducting Bodies and Wires." NOSC TD 1325 (August). Naval Ocean
Systems Center, San Diego, CA.

INMOS. 1988. The Transputer Databook, Bath Press Ltd, Bath, England.

Li, S.T., J.C. Logan, and J.W. Rockway. 1988. "Ship EM Design Technology,” Naval Engineers
Journal, May.

ParaSoft Corporation. 1990. EXPRESS Fortran Reference Guide, Version 3.0, Pasadena, CA,
ParaSoft Corporation. 1990. EXPRESS Fortran User’s Guide, Version 3.0, Pasadena, CA.
Pountain, D. 1990. "Virtual Channels: The Next Generation of Transputers,” BYTE Magazine, April.
Tazelaar, .M. 1988. "Parallel Processing,” BYTE Magazine, November.

Wilton, D.R., and S.U. Hwu. 1988. "JUNCTION Code User’s Manual." NOSC TD 1324 (August).
Naval Ocean Systems Center, San Diego, CA.

Wilton, D.R., and S.U. Hwu. 1989. "JUNCTION: A Computer Code for the Computation of
Radiation and Scattering by Arbitrary Conducting Wire/Surface Configurations,” 5th Annual
Review of Progress in Applied Computational Electromagnetics (March).

66

