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Abstract-This paper describes a numerical method for the
analysis of the magnetic shielding with thin layers in three
dimensional, time-harmonic magnetic fields. In this method,
FEM is employed to solve a couple of differential equations
which express the surface impedance of the thin shielding
materials. The magnetic fields in air regions are modeled by
means of BEM. The above formulations are coupled to evaluate
the shielding properties. The resultant matrix equation includes
unknowns of two times the number of nodal points. This method
can analyze not only a shielding system with closed surfaces but
also that with open surfaces without introducing fictitious
boundaries in air region. The method is shown to give accurate
shielding factors of a spherical shell over tested range of
frequencies. The eddy currents on a shielding plate are
successfully obtained using the present method.

1. INTRODUCTION

Magnetic shielding is indispensable for sensitive
measurement of biclogical magnetic fields. It also plays an
important role in electron microscope systems which cannot
work well in magnetic disturbances above 0.1 [UT]. Moreover,
in magnetic levitation cars, which generate strong maguetic
fields, magnetic shielding is necessary to reduce possible
health hazards due to the magnetic fields. The magnetic
shielding system must be optimized to obtain good shielding
factors which characterizes the efficiency of the shielding
[13-[3]. The main purpose of this work is to develop a numerical
method which effectively analyzes the efficiency of the
shielding on the basis of computer-aided design.

Since shielding layers are usually extremely thin
compared with the overall size of the shielding system, it
may be inefficient to discretize them in the direction of their
thickness. So far, special numerical treatments of thin layers
have been reported. An FEM which can anajyze eddy current
problems with a thin conducting plate has been proposed [4].
This method assumes constant distribution of eddy currents
in the direction of thickness of the plate. This assumption is,
however, not valid when the skin depth is shorter than the
thickness.
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Static magnetic fields have been computed by means of an
FEM-BEM coupled method [5]. Moreover, the hypersingular
integral equation has been used to analyze static fields with
thin magnetic materials [6]. The above two methods do not
include treatment of eddy currents, To deal with eddy-current
problems with thin shielding layers which have high
permeability and conductivity, a couple of differential
equations which express the relation between the magnetic
fields on both sides of the surface have been introduced and
solved in conjunction with the integral equations which govern
the magnetic fields in vacuum region [7]. The above
differential equations have been explained from the view
point of so-called surface impedance [8].

In this paper, a numerical method based on the FEM-BEM
hybridization is introduced to analyze three dimensional
magnetic fields with thin shielding layers on which eddy
currents can flow. This approach reduces the number of
unknowns by employing the indirect method for the integral
equations. Moreover, this method allows us to deal with both
closed and open surfaces of shielding layers without
introducing fictitious boundaries in air region.

The remainder of this paper is organized as follows. The
next section gives a brief derivation of the surface impedance
of thin layers, which is expressed in the form of a couple of
differential equations. After the present method is described
in the third section, numerical examples and discussions on
the results are given in the fourth section. Finally, some
concluding remarks are given in the last section.

I1. SURFACE IMPEDANCE OF THIN SHIELDING LAYERS [7], [8]

Let us consider a thin shielding layer S, with thickness
d, permeability ¢t and conductivity &, immersed in a time-
harmonic magnetic field (see Fig. 1). The thickness of the
layer § is here assumed to be small compared to the overall
size of the layer. Moreover, the electromagnetic properties of
this layer are assumed to be linear.

We first consider Faraday's law

VxE=-jB. (1)

Taking the inner product of both sides of (1) with the normal
unit vector m, and integrating it in the direction n of the
thickness which is parallel to n, we have
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Fig. 1 Thin shielding layer
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where Vr is the tangential gradient operator which is defined
by V’r =2V~ nan. The left hand side of (2) can be written in
terms of the surface current density K, which is the integral
of the current density J in the direction of the thickness.
Moreover, K can be expressed in terms of the jump in the
tangential magnetic field H . that is,

d
J.Vz (Exnydn=V -(Kxn/0)
4]

-V, [(HZI -H, ) /0'] 3)

On the other hand, the right hand side of (2) can be expressed
in terms of the normal components H, on the surfaces using
the fact that H in the layer can be written as
H=he" +hWe ™, where 7 is the complex wavenumber
defined by ¥ =(1+ j)/d and & denotes the skin depth. The
result is

d .

Jy

—jCOJ.B-ndn=— i (H2 +H ), 4)
o-g n 1n

¢

where ¢ = y/[ctanh(yd/2)]. The insertion of (3) and (4) in
(2) yields

-5 v (g -
an +Hnl - m“o Vf (HIZ Htl)‘ (5)

‘We next consider the equation of flux conservation
V-B=0. (&)

Integrating (6) in the direction of the thickness, we have

d
pzo(an-Hnl)wr -J-OB!dn=0 (N

Evaluating B, again in the layer in the same way as the one
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used above, we obtain the second eguation

Ho,-H, =£ﬂn—vz "(sz"'Hzl)’ &
0

where 71 = jwu tanh(yd/2)/y. The symmetric differential
equations (5) and (8} express the surface impedance of the
thin shielding material. Since the variation of the magnetic
field along the direction of the thickness has been already
evaluated in the above procedure, the discretization of the
shielding layer in this direction is not necessary. Of course,
when the material is non-linear, this formulation is no longer
valid. The equations (5} and (8) can be regarded as the
boundary conditions to the equation that governs the magnetic
fields encompassing the shielding layer.

I11. NUMERICAL METHOD

In this section, for the analysis of magnetic fields around
thin shielding layers, we consider the numerical method based
on the surface impedance introduced in the previous section.

Since the couple of differential equations (5) and (8)
representing the surface impedance include a differential
operator defined on a curved manifold, it is, in general, difficult
to find the corresponding fundamental solution necessary for
BEM. On the other hand. there is no difficulty in applying
the FEM to the solution of the differential equations. The
region encompassing the shielding materials, which is usually
air and unbounded, can be effectively computed by BEM.
For these reasons, we employ FEM and BEM to deal with
the equations of surface impedance (5) and (8), and equations
of magnetic fields in air region, respectively.

Let us consider the magnetic fields around a thin shielding
layer S shown in Fig. 2. The shielding layer § is first assumed

Q External current

Fig.2. Shielding layer and external current



to be a closed surface. This assumption will be relaxed later.
The current source which generates the applied field H, is
placed outside of S. The inside and outside regions Ql and
are air regions.
The magnetic fields in Ql and QZ are expressed by the
integral equations as follows:

Cx)p, ()= -J. H, (x)G(x';x)dS’

h3
I p,(x) 20Ex) aG(x (53 4o,

by

(9a)

[1-C(0))g,(x) = J. H ,(x)G(x’,x)dS’
5

I¢2(x') 200 45"+ gy (). (90)

S
where G =1/4z|x’ ~x|, C(x) is a coefficient whose value
characterizes the solid angle of the point x, and @, denotes

the potential corresponding to the source field H,. We here
employ the indirect method, that is, we add (9a) to (9b) to

get
= J[h(x')G(x’;xH W(x’)——aaf?;:;x)]d ’

5

¥(x)
2

2c -11¥2 4 o (0, (10)
where new variables have been introduced as follows :
Vv=o,+0, (11a)
V0,9, (11b)
and
{"Ean +H (12a)
h= an - Hnl' (12b)

Note that (10} holds not only for closed surfaces but
also open surfaces. This can be understood by considering a
closed surface §* which consists of a open surface §
corresponding to the shielding layer and a fictitious boundary
S, placed in vacuum region. We can now see that when (10)
holds for $*, it must also hold for § since the surface integrals
in the right hand side of (10) vanishes on §, .

We derive another equation in addition to (10) by taking
the derivative of (9) in the normal direction m of the point x
on S and adding them again. The result is
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—g— =n j h(x’)V'G(x’;x) + {V;W(x') X n'}
5

h(x)

XV'G(x';x)JdS’ +[2C(x) - 1] =22+ H_(x). (13)

Equation (13) is also valid for both closed and open boundaries.

The discretization of (10} is easily performed by choosing
the nodal points as the collocation points. On the other hand,
this collocation is not valid for (13) which includes the normal
vector n unless S is smooth around x. The simplest way to
avoid this difficulty may be to put the collocation points at
the center of boundary elements, where n is always well
defined. To do so, 4 is assumed to be constant on each
element while the other variables are piecewise linear. Now
we obtain the matrix equations from (10) and (13) as

(¥ =[G, |m+ 1, Jivr+{e, } (142)

(i} = [G2 ]{h} + [H2 ]{ Wi+ {Hm } (14b)

where [G,] and [H,] are N x N matrices while [G,] and [H,]
are Ne x N matrices.

On the other hand, we discretize (5) and (8) using FEM
to get matrix equations of the form

[+ o, A} - 0
[, Ji7}+[m, Jind= (03

where [M,} is N xNe, and the others are N x N matrices.
The substitution of (14) into (15) yields a system of equations

[KI] + [Ml ][H2 ]:H h } _
[K2 ][Hll v
_ [M]] {0] Hcm a8
[0] [Kzl ?
We see that this formulation allows us to reduce the number
of unknowns compared to the original problem; it is now 2V

where N is the number of nodal points. After the solution of
(16) the magnetic fields are computed by

(15a)

(15b)

[ (M, 1[G, ]
[K, NG, 1+[M,]

= J‘[h(x’)V’G(x’; x)+ {V; w(x')x n’}xV’G(x’;x)]dS’
M
(17
IV. NUMERICAL EXAMPLE

We consider a spherical shell, with radius 0.1 [m],
thickness 1{mm], conductivity O'=1.0><107[1/.Qm],
immersed in a uniform, time-harmonic magnetic field. The
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Fig. 3 Shielding factor of a sphericall shell

Fig. 4 Eddy currents on a spherical shell immersed
in a uniform, time-hamonic magnetic field.

shielding factor s defined by s =[Hi| /lHOI, where Hi and
I-I0 are the magnetic field at the center of the shpere and
applied magnetic field, respectively, is evaluated by the present
method. The number of nodes N and elements N, are taken
to be 146 and 288, respectively. In Fig. 3, the computed
shielding factors are plotted against the frequency. We see
that the present method yields good results over the test range
although the accuracy seems to become worse as the
permeability increases. Figure 4 shows the eddy current
distribution, for ,u=100y0 and f=1 [kHz].

As mentioned in the previous section, the present method
can also analyze magnetic fields around a shielding material
with an open surface. To test this ability, the eddy current
which is induced on a plate by a uniform, time-harmonic
magnetic field perpendicular to the plate is analyzed by the
method. Figure 5 shows the result, which scems reasonable
from physical point of view.
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Fig. 5 Eddy currents on a plate immersed in a
uniform, time-harmonic magnetic field.

V. CONCLUSION

In this paper, a numerical method for the analysis of
magnetic fields with thin shielding layers have been described.
The present method has the reduced set of unknowns, and
thus shortens computational times. Moreover, it can be applied
to the analysis of fields with open shielding layers. The
shielding factors computed by the present method agree well
with the analytical values. The method provides reasonable
eddy currents on a plate.
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