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Abstract

The kernel in the cylindrical antenna integral equation was partitioned by Schelkunoff into a com-
plete elliptic integral and a bounded integral. This paper gives an exact expression for the bounded
part.

1 Introduction

The cylindrical antenna integral equation for total axial current I(z) on perfectly conducting tube
of length ‘2h’ and radius ‘@’ is {1}: :

Jw (-gé- + kg) Az} = sz;(z) . (1)
where .
A (2) = 21% | K(z- )2z . ©2)
The kernel in (2) is: .
, 1 (7 e TR
K(z—z):z—ﬂf_r —dd/, (3)
where ‘
: #\172
R=R(z—-2,¢) = [(z — 2')? + 40 sin® (5)} : (4)

Here € and p characterize the medium [1], and & is the wavenumber.
For thin structures (@ < h and @ < A), K(z — 2} is usually substituted by a reduced kernel

approximation
' e—jkr
KreKJ(z—2)= —> ()

where 1o '
r=r(z—z’)=[(z—z’)2+a2] :

(6)

The kernel (3) possesses a logarithmic singularity (see for example (2]). This needs to be included
while solving (1). Schelkunoff has partitioned the kernel into two parts.

The first part is a complete elliptic integral and the second part is a bounded integral. By
expanding the elliptic integral, Pearson [3] has derived an expression which includes the logarithmic
singularity. On the other hand, as the exact expression of the bounded integral is not available,
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it is usually evaluated numerically. Karwowski [4] has suggested a closed form approximation; an
alternative to the numerical integration. In this presentation we obtain an exact expression for the
bounded part. Certain recurrent relations are obtained to simplify its computation. The stability
of the recurrence relations is analyzed and checked. .

Before we conclude this section we shall briefly review other research accomplishments regarding
the kernel (3). Wang [5] has obtained an ‘exact’ expression for the kernel (3) in terms of spherical
Hankel functions. Werner [6] has presented an alternative ‘exact’ expression replacing the spherical
Hankel functions by complex exponential functions. This has an advantage from the point of view of
analytical and numerical evaluation of the kernel. Werner has presented ‘extended’ approximations
7] to the kernel, by truncating the series to a few terms. This is an alternative to the reduced
approximation (5). Interestingly, the vector potential in (2) due to the singular part Kz has been
worked by Werner, et al [8]. The results of this paper on the bounded part Kz can be useful when
combined with the results of Pearson [3] or Werner, et al [8].

2 Kernel
Recall the Schelkunoff partition:
K(Z—ZI)=KE+KB, (7)
where 1
Kp = / Ly (8)
and 1 . kR
S L St SN Y
Kp = 2 f_ R ag’. )

Expanding the first integral, an elliptic integral, Pearson has obtained the following expression,
which we reproduce, with a correction:

1
KE‘—-'-——-IHIZ—Z,I-J-KEB, (10)
ma
where
1_
Kgp = ﬁln|z—z'|+£-
' wa ma

{InSa A+ (-;-)2 [111 (-g;) - (1—25)] B2
N A My A

We have used the following notation
2a
[4a2 + (2 — 22’

The series is convergent for |z — /| < 4a. The leading term in K55 can be shown to be of the form
(2= 2)*In|z — 2'|. Next, we shall obtain an exact expression for K.

8= By = (1~ %2, (12)
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3 Expression for Kp

Kz can be written as :
Kg=Kg+ Kpi (13)

where Kp, is the real part and Kp; is the imaginary part _
~1 ¢~ (1-coskR} ,, '
D RSl 14
KB 2T /—‘ﬂ' R d¢ ( )
and
—7 (7 sinkR
. g — d . 1
KB 2r Jx R ¢ ( 5)

Expanding sin kR in eq. (15) and setting (z — Z') = u, we get the infinite series:

& (=Y Ao (v, a)
e ] (16)
where -
Ay (u,a) = ]0 R¥™dy (17)
~ and 12
Ry = [u2 + 4a? sin® ,u] i (18}
We find from egs. (17) and {(18) that | |
A (u,a)=m (19)
and
Ag(u,a) =7 (u2 + 2a2) : (20)

In eq. (17), we rewrite Ap-1(u,a) as:
s —
Am-1(u,a) = f (u2 + 402 sin® ,u)m ' (u2 + 44 sin® ,u) du
0
— (u2 + 2a2) Am—a(u,a) — 24° _/0 (vf + 402 sin® ,u)m—l cos 2udys .

Apply integration by parts to the integral. After certain algebraic manipulations, we get the recur-
rence relations:

1+ (m=1)]An = (¥¥+20°) 1+2(m—1)] Am-a
—(m—1)u? (w® +40%) Amg; m=2,3,4 (21)

Using A_1, Ao from eqgs. (19) and (20) we find Ap_1; m = 2,3, 4,--- and then determine Kp; from
eq. (16) up to a desired accuracy. The stability of the recurrence relations needs to be examined
for a given radius ‘e’ and length ‘2h’ of the wire. This has been done in the stability section. Now,
on similar lines the real part, namely Kpg,, becomes

1 & (=1)™k?*™*+2B,,_1(u, a)
Kor=—72 (2m + 2)!

T m=0

(22)
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where .
Bmi1(u,a) = fo RI™Hgy, (23)

We discuss the computation of K, for two distinct cases of u = z — 2/, namely for u = 0 and
for u #£ 0.
From eq. (23) we find

B_1(0,a) = 4a _ (24)
and then obtain recurrence relation.
2m
Bm_l(O,a) = [m} (20)2B _2(0, G) . (25)

Computed values of Bp,.1, m = 1,2,3,--- are substituted in eq. (22). It may be noted that the
recurrence relation is stable for a < 0.5. This is a dimensionless number.
We obtain the following results using [9]

/2
B_i(u,a) = 2u/0 (1 + ¢*sin ,u,)l/2 du
= 2usE (g) , (26)

where we have used the notation ¢ = (2a/u), s = (1 + ¢2)/2. Further,

By(u,a) = 2u® {SE (%) + qu(q)] , (27)

o =3[0 e () - (3) ()

E and F are elliptic integrals of second and first kind, respectively, and are evaluated to a desired
accuracy using Landen’s Transformation [10]. The recurrence relation now is:

where

Bm_1(u,a) [1 + (Qm — 1)} = (u2 + 2a2) Bnoo(u,a)[1+ (2m —1)]

2
_ [(Qm; 1) u? (u2 + 4a2-) B_3(u, a)]

m=234,- (29)

Using eqs. (26) and (27) we can obtain B,,_;, m = 2,3,4, - - - and then evaluate Kp,. The stability
of eq. (29) is also included in the next section.

4 Stability

The characteristic equation [11] corresponding to eq. (21) is:

(I+n)z’—a(l+2n)c+ny=0; n=12, .. (30)
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where a = (u2 + 242), v = u? (u® + 40®). Rewrite eq. (30) as

zglz—a) n (31)

ar—vy (1+n)

The above equation is useful to seek the stability condition, namely lz} < 1. For a given radius ‘@’
and length of wire ‘2h’, this condition shall depend upon A.
Denoting

=p (32)

The solution of (31) is
o a(l+p)+ @*(1—p)+ 16pat]"/?
= 5 .
The right hand side is a monotonic increasing function for given values of p and a, enabling direct
evaluation of the maximum of z. For recurrence relations corresponding to the real part given in
eq. (29), the analysis is repeated on similar lines with

(33)

_(2n+1)

p—(—zm, TL=1,2,3,"', (34)

yet the stability criteria is not altered. Thus, for any wire of known radius ‘e’ and length ‘2h’, using
eq. (33) we can easily establish the condition of stability on A before computing the recurrence
relations and determining Kpg.

5 Examples

As a first case we have a dipole of half-wave length in length and whose radius is (A/8). From eq.
(21), we note that the value of p varies from 1 /2 to a limit of 1. Then, the maximum of z in eq. (33)
is 5A2/16, which implies that the condition for stability is A < 4/+/5, that is approximately 1.7888.
This is not a strong condition as only a limiting value could be used. In the first example we set the
radius of the wire to be 0.003 and A o be 1.0. This is a case of thin wire and Karwowski’s results
are accurate. We have given in Table 1 for various values of u = z — 2/, the (real, imaginary) values
of K from (16) and (22). These values are compared with those of Karwowski i4].

Next, we consider a cylindrical wire of a wavelength in length and radius (A/4). The maximum
value of z is (5)2/4). Thus, for A < 2/ V5 (approximately 0.8944), the recurrence relations in eqgs.
(21) and (29) are stable. The condition in eq. (25) that @ < 1/2 is satisfied in this case also. In
the second example we have @ = 0.22 and A = 0.88. The corresponding results are given in Table
2. Here, while setting A = 0.90, the recurrence relation was verified to be unstable, which agrees
with our estimate. The values in the tables are correct up to four decimal places and appropriately
rounded up to three decimal places. Only 12 terms in the series were used to obtain this accuracy.
The difference between the sets of the values is due to the approximation introduced by Karwowski
in replacing (1/R) by (sin¢/R) in (9) and thus apparently diminishing the contribution near the
ends of the interval.
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Table 1: Comparison between this work and that of Karwowski [4] for a thin wire half-wave dipole.

a=10.003 and A= 1.0
u Present Karwowski
0.0 | (—0.075, —6.282) | {~0.075, —6.282)
0.1 | (—1.885, —5.877) | (—1.911, —5.877)
0.2 § (—3.433, —4.755) | (—3.455, —4.755)
0.3 | (—4.347, —3.170) | (—4.364, —3.170)
0.4 | (—4.513, ~1.469) | (—4.552, —1. 469)
0.5 | (—3.997, +0.226) | (—4.000, 4+0. 226)

Table 2: Comparison between this work and that of Karwowski [4] for a thick wavelength long wire.

e =0.22 and A = 0.88

u Present Karwowski

0.000 | (—4.114, —3.063) | (—4.341, —2.894)

(
0.176 | (—4.500, —2.001) | (—4.584, —1.852)
0.352 | (—4.150, +0.150) | (—4.152, +0.250)
0.528 | (—2.577, +1.406) | (~2.215, +1.451)
0.704 | (—0.884, +0.903) | {—0.431, +0.909)
0.880 | (—0.323, —0.371) | (—0.096, —0.380)

6 Conclusion

This paper makes an effort to evaluate the kernel by the definition of Schelkunoff [1]. An exact
expression for the bounded part of the kernel K is given. This result can be used along with that
of Pearson {3] for solving cylindrical antenna integral equations. Examples are considered where
Kp is evaluated by the present method and is compared with that of Karwowski {4].
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