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ABSTRACT.  The circle-fit algorithm is shown to be an 
attractive alternative to the spectral domain form of the two-
dimensional periodic Green’s function when the radiated 
fields are evaluated in the plane of the array. As the name 
implies, the circle-fit algorithm predicts the summation limit 
by fitting circles to the converging spiral of spatial domain 
partial sums in the complex plane.  Several numerical 
examples comparing the raw spatial, spectral, and circle-fit 
accelerated spatial sums demonstrate the algorithm's 
computational savings.  While other series extrapolation 
methods are shown to be more efficient, the circle-fit 
algorithm has the advantage of providing insight into how the 
Green’s function converges. 
 
1. INTRODUCTION 
 
When using the Method of Moments (MM) to solve 
electromagnetic scattering problems, infinite array geometries 
invariably lead to infinite summations.  The semi-infinite 
arrays explored in our recent work are no exception [1,2].  In 
seeking a numerical solution, one is forced to truncate the 
summations in one way or another.  The obvious choice is to 
terminate the summation after a given number of terms, but 
determining how many terms to include before truncation is 
not always a straightforward task.  As is often the case, the 
obvious choice is not always the “best” choice.  Many authors 
have proposed various methods for improving the 
convergence properties of these summations [3,4,5].  
Michalski provides a useful summary of the most common 
techniques in his paper on numerical integration of 
Sommerfeld integral tails [6]. 
 
In the following, we describe a novel algorithm that takes 
advantage of the convergence characteristics of the infinite 
summation to accelerate its convergence.  In particular, the 
spatial domain form of the periodic Green's function becomes 
an attractive alternative to the spectral domain form when the 
fields are evaluated close to the array plane.  In this case, we 
demonstrate that the circle-fit algorithm successfully 
accelerates the convergence of the raw spatial summation, 
providing a computational advantage over its spectral domain 
counterpart. 
 
2. PERIODIC GREEN’S FUNCTIONS 
 
The spatial domain Green’s function for a two-dimensional 
array of line sources with inner-element spacing, d, along the 

y-axis is given by 
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where Ho

(2) is the Hankel function, zeroth-order, second kind 
and k is the wave number.  (Note:  The array’s reference 
element is located at the origin.)  Unfortunately, the spatial 
domain form given in Equation (1) converges very slowly due 
to the fractional power decay of the Hankel function's large 
argument behavior.  A commonly used alternative to the 
spatial domain form is the spectral domain Green’s function 
given by 
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This series converges very quickly due to the evanescence 
plane waves' exponential decay.  However, when the 
observation point lies in the array plane, the decay is no 
longer exponential negating any advantage over the spatial 
domain form.  This case is of practical interest in the 
application of the MM to periodic planar arrays.  In the next 
section we describe an acceleration technique which, when 
applied to Equation (1), provides a computationally efficient 
alternative to the spectral domain sum. 
 
3. CIRCLE-FIT ALGORITHM 
 
The circle-fit acceleration algorithm applies primarily to 
oscillatory summations.  The circle-fit algorithm is a 
modification of the spiral average method proposed by 
Skinner [7]. Both are based on the observation that, for a 
given test location, the consecutive spatial domain partial 
sums form a spiral about the convergence point in the 
complex plane.  This phenomenon is due to the fact that the 
distances between each successive array element and the test 
point asymptotically approach the inner-element spacing.  By 

1054-4887 © 2002 ACES

ACES JOURNAL, VOL. 17, NO. 1, MARCH 2002, SI: APPROACHES TO BETTER ACCURACY/RESOLUTION IN CEM 93



estimating the center of the spiral, one obtains an 
approximation for the eventual convergence point. 
 
The primary distinction between Skinner's spiral average 
algorithm and the circle-fit algorithm lies in the technique 
used to estimate the center of the spiral.  Skinner determines 
the number of partial sums required to have a complete phase 
rotation in the complex plane.  He then performs an arithmetic 
average of the partial sums to obtain his estimate.  When the 
inner-element spacing does not lead to an integer number of 
phase rotations, Skinner must choose an error parameter and 
search for the correct number of partial sums required to 
obtain a phase rotation within an error percentage of an 
integer number of rotations. 
 
In contrast, the circle-fit algorithm does not require an integer 
number of phase rotations.  The only requirement is that there 
is some phase rotation over the collection of partial sums.  As 
the name implies, the algorithm simply attempts to fit a circle 
to the sequence of partial sums.  The center of the circle 
provides an estimate to the infinite sum. 
 
As an illustration, consider the two-dimensional Green's 
function for a semi-infinite wire array given by Equation (1).  
For large m values, one can use the asymptotic form of the 
Hankel function to express the summand as [8] 
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Note that each summand contributes a component with a 
constant phase increment and monotonically decreasing 
amplitude.  
 
Figure 1 depicts a typical sequence of partial sums. The 
sequence was generated using Equation (1) with the 
parameters: d = 0.8λ, x = 0.0λ, y = 0.4λ. The figure also 
contains a plot of the "best fit" circle to the last six partial 
sums.  The center of this circle represents the current estimate 
of the infinite sum.  To obtain a final estimate, one compares 
the current estimate with the estimate generated from the next 
six partial sums.  When the difference between subsequent 
estimates reaches a specified tolerance, one calls the process 
converged.  Note in this case the estimates are generated after 
every sixth partial sum.  In general, a new estimate could be 
generated using any number of previous partial sums (greater 
than three) every time a new partial sum is calculated. 

 
Figure 1  Circle-fit Algorithm Applied to Sequence of 
Partial Sums of the Spatial Domain Green's Function. 

The method for fitting the circles comes from a paper by 
Moura and Kitney [9].  In it they describe how to determine 
the circle that minimizes the square error between itself and 
the set of data points.  Simply stated, the problem amounts to 
finding a center point, (xo,yo), and a radius, ro, such that the 
error defined by 
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is minimized.  This is accomplished by setting to zero the 
partial derivatives with respect to xo, yo, and ro. The latter 
constraint gives a relationship between the data set, (xi,yi), the 
circle's center point, (xo,yo), and its radius, ro 
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From the remaining constraints, Moura and Kitney derive a 
matrix equation whose solution gives the circle's center, 
(xo,yo). 
 

( )6
2221

1211

2

1
















=









o

o

y
x

GG
GG

C
C

 

 
where 
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Significantly, this method is a direct method.  (i.e., the circle's 
defining parameters are calculated from the data points in one 
step.)  There is no iterative process to refine an initial guess, a 
fact crucial in maintaining the circle-fit algorithm's 
computational efficiency. 
 
4. NUMERICAL RESULTS 
 
In this section, we examine the circle-fit algorithm’s 
convergence characteristics.  Taking the lead from Michalski 
[6], we employ the commonly used ε algorithm as a 
benchmark to evaluate the circle-fit algorithm’s computational 
efficiency.  Figure 2 clearly demonstrates this efficiency by 
comparing the convergence characteristics of the acceleration 
algorithm to the unaccelerated sums of Equations (1) and (2).  
The parameters here are the same as those used to generate 
Figure 1.  Convergence is determined by calculating the 
relative error between each algorithm's estimate and a “truth” 
value obtained by setting the convergence tolerance to 
machine accuracy for either algorithm. The relative error is 
then defined by 
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Figure 2  Relative Error Magnitude versus the Number of 
Terms for the Unaccelerated, Circle-fit, and Benchmark  ε 
Accelerated Sums for (x,y) = (0.0λ, 0.4λ), d = 0.8λ. 

Table I contains the CPU times obtained on an 800MHz 
Pentium II laptop for the same array geometry.  Clearly, the 
overhead in fitting the estimating circles to the partial sums is 
more than compensated by the enhanced convergence.  (Note: 
 “NC” indicates the particular summation calculation did not 
converge.) 
 
Table I  Green's Function Calculation Times for Two-
Dimensional Array with (x,y) = (0.0λ, 0.4λ) and d = 0.8λ. 
 
Relative 
Error 

Spatial 
(Terms/ 
CPU sec) 

Spectral  
(Terms/ 
CPU sec) 

Circle-fit 
(Terms/ 
CPU sec) 

1.0e-1 28 / 0.01 3 / 0.00 5 / 0.51 
1.0e-2 2764 / 1.47 34 / 0.00 15 / 0.51 
1.0e-3 NC 342 / 0.03 60 / 0.53 
1.0e-4 NC 3417 / 0.31 275 / 0.67 
1.0e-5 NC 34165/ 3.13 1265 / 1.27 
1.0e-6 NC NC 5850 / 4.09 
1.0e-7 NC NC 27170 / 17.5 
 
Figures 3 and 4 show the error magnitude comparisons for 
different array spacing and observation locations (in the array 
plane).  In all cases, the circle-fit algorithm converges faster 
than the spectral domain Green's Function.  However, it is 
apparent the algorithm does not out-perform the ε algorithm. 
 

95COLLINS: CIRCLE-FIT SUMMATION ACCELERATION OF PERIODIC GREEN'S FUNCTIONS



 
Figure 3  Relative Error Magnitude versus the Number of 
Terms for (x,y) = (0.0λ,0.3λ), d = 0.6λ. 

 
Figure 4  Relative Error Magnitude versus the Number of 
Terms for (x,y) = (0.0λ,0.1λ), d = 1.2λ. 

 
5. CONCLUSION 
 
We have investigated an alternative to the spectral domain 
transformation of the spatial domain Green's function for two-
dimensional periodic arrays.  Based on the decaying spiral 
behavior of the spatial domain partial sums in the complex 
plane, we approximate the convergence point as the center of 
a circle fit to the last few partial sums.  The use of the circle-
fit algorithm is shown to accelerate the convergence of the 
spatial domain Green’s function, providing a computational 
advantage over the spectral domain when the fields are 

observed in the array plane.  While the technique does not 
compete favorably with the ε algorithm, we point out the 
circle-fit algorithm does provide insight into how the periodic 
Green’s function converges, something the more efficient 
algorithms cannot do.    In addition, the circle-fit algorithm 
may provide a benefit when employed in combination with a 
more efficient algorithm.  We are continuing our 
investigations of this technique to optimize the number of 
partials sums used given a particular array geometry.  
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