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Abstract

Eigenfunction expansions for fields scattered by large structures are generally very
slowly convergent. The summation often consists of two factors where one factor
approaches zero and the other factor grows in magnitude without bound as the sum-
mation index increases. Each term of the expansion is bounded; however, due to the
extreme magnitude of the individual factors, computational overflow and underflow
errors can limit the number of terms that can be computed in the summation thereby
forcing the summation to be terminated before it has converged. In this paper an
exact technique that circumvents these problems is presented. An auxiliary function
is introduced which is proportional to the original factor with its asymptotic behavior
factored out. When thege auxiliary functions are introduced into the summation, we
are left with the task of numecrically summing products of well behaved factors. A
recursion relationship is developed for computing this auxiliary function.

1 Introduction

When solving for the fields scattered by canonical geometries, the exact solution is often
available in eigenfunction form. The eigenfunction form is a viable representation for the
fields providing that some characteristic dimension of the structure is “small” with respect
to the wavelength, otherwise, the cigenfunction expansion is very slowly convergent and
additionally can exhibit the following computational difficulty. These pathological eigen-
function expansions are in the form of infinite summations of products and quotients. Each
term of the summation is well-behaved, however, the magnitude of the individual factors
and/or divisors become either too small or too large to handle on the computer result-
ing in overflow/overflow errors. Ideally, one should find an alternate representation of the
series that is more quickly convergent using a technique such as Watson’s transformation
[ Tyras, 1969]. For many geometries the topology of the characteristic plane may be too
complicated to perform the necessary function theoretic manipulations. Therefore, one may
be forced to sum the slowly convergent series.
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The overflow /underflow problem can be alleviated by implementing an auxiliary function
that is proportional to the original pathological function with the asymptotic behavior
factored out. These auxiliary functions can be calculated “exactly” from new recursion
relationships which are derived from the recursion relationship of the original function. In
Section 2, the development of these auxiliary functions and the corresponding recursive
techniques will be presented. Section 3 contains an example of the plane wave scattering
by a circular cylinder using the techniques developed in this paper and Section 4 contains
some concluding remarks. Throughout this paper an ¢’*? time dependence is assumed and
suppressed.

2 Analytic Formulation

Symbolically, an eigenfunction expansion often has the form

¢ = %C'n Sn(7) La(2), (1)
where C, is a well-behaved constant, 5,{z) is a factor that becomes increasingly small as n
grows,

S.(z) =30, (2)
and L, (z) is a factor that grows without bound with increasing n,

Lu(z) == o0, (3)

such that the product, S,(z)L.(z}, is bounded and the sum ¥, G, S.(2) L. () is convergent.

2.1 Computation by Recursion

Recursion relationships are very convenient, and are a common way to calculate the S, (x)
and L,(x) functions. Typically, the functions that arise in eigenfunction solutions to elec-
tromagnetic problems satisfy a three term recursion relationship which can be expressed as
follows:

Aln, ) yo(z) + B(n, ) Ynr1{z) + C(n, 2) Yn_1(z) = 0. (4)

For a fixed value of z, the recursion relation can be treated as a difference equation in n. A
three term difference equation has 2 independent solutions {Press, ef al., 1988], i.e:

lz) = {Fu(z),Qulz)}. (5)
So the general solution to the recursion relation is:
yn(z) = aPu(z) + 8 Qn(z) (6)
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Magnitude of Qn and P,

Increasing N ———=

Figure 1: Relative magnitude trends of F, and G},.

where « and 3 are constants that need to be determined by physical considerations.

Miller’s algorithm [Press, et al., 1988] is a commonly used technique to generate the
sequence {F,(z)} or {Qn(z)}. The algorithm begins by arbitrarily choosing two successive
values to substitute into the recursion relationship which is used to generate the entire
sequence. For example, let

yo(z) = Colx) and  y1(x) = Ci(2), )
which when substituted into Equation (6) yields:
Co(z) = aR(z)+ [ Qo(x), (8)

Since P,(z) and Q,(z) are known to be independent, then by Equations (8)—(9) the values

of @ and 8 are determined uniquely, hence y,(z) is well-defined. Note that y,(z) contains

components of both solutions, {£,(z), @n(x)}, providing that the choice of Co(x) and Cy(x)

are not proportional to either Py(z) and Pi{z}, respectively or Qo(z} and Q:1(x), respectively.
-1

& _ Fy Qo Co ) Fo Qo £0. (10)

8 P O | P Q

At this point it is necessary to examine the stability of the desired solution. Stability
refers to the relative rate of growth of the magnitude of the desired solution relative to the
non-desired solution. Let’s examine the common circumstance where |P,(z}| increases as n
increases and |@,,(x)| decreases as n increases as shown in Figure L. It is clear that since our
solution, y,(z), contains components of both P,(z) and @Q.(z), then if we consider larger
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and larger values of n, @, (2} will be less and less significant compared to P,(z), therefore:
yn(z) ~ a F.(z); n — o0, (11)

Under these circumstances, P,(z) is said to be stable recursing up (in n). Similarly we
could have arbitrarily chosen values for y,(x) for two large successive values of 7, and then
recursed down thereby recovering the solution for Q,(x). In this case Q,{(z} is said to be
stable recursing down. Mathematically,

¥n(z) ~ BQnlz); 71— —oo. (12)

This process generates a sequence proportional to the desired P,(x) and Q.(z) sequences.
Po(x) or Q,(x) can be recovered by multiplying the entire sequence {a P, (x)} or {3Qn(x)}
by 1 or %, respectively. o or 8 can be determined by calculating one value of {F.(z)} or
{@Q.(2)} and comparing it to the corresponding value of {« P.(z}} or {3 @Q.(z)} which was
calculated by recursion. An alternative is to use a normalization relationship of the form:

> Y Pa(z)=1 or > 6 Qulz) = 1. (13)

In the introduction of Abramowitz and Stegun [1972, p. XIII], there is a listing of many
functions and their direction of recursive stability, and in the various chapters corresponding
to the functions of interest, normalization relations of the form in Equation (13) can be
found.

An alternative to Miller’s algorithm can be applied if t wo successive values of the solution
are known. If the desired solution contains only one component of the two independent
solutions { P, (), @n{z}}, then it is necessary to recurse in the direction of recursive stability.
Ideally, the direction of recursion should not matter, however, duc to round ofl error in the
computer, the undesired sclution will be present and eventually grow to a significant value
relative to the desired component of the solution.

As mentioned previously, the magnitude of the individual functions which we need to
calculate can be either too large or too small for the computer to handle. This is why we
introduce the auxiliary functions in Section 2.2.

2.2 The Auxiliary Functions

Since S,(r) and L,(x) are computed separately, before the sum converges individually they
can become either too small or too large to calculate (due to computer limitations). To
remove this upper bound limitation on the index of the summation, n, we first note the
asymptotic behavior of S,(x) and L,(x).

Sp(r) o« o.(z), n— oo, (14)
and,

La(2) o An(z), n— o (15)
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Introduce the auxiliary functions A3(z) and AL(z) which are defined for an appropriate
interval over n by the following expressions:

Sa(z) = Aj(x) ou(z), (16)
and,
La(z) = AL(z)An(o). (17)

Since the auxiliary functions are equal to the original pathological functions with the asymp-
totic behavior factored out, the auxiliary functions remain well-behaved for all n and are
therefore computationally preferable over the original S,(x) and L,(z) functions. These
expressions (Equations (16) and (17)) for S.(xz) and L.(x) can be substituted into the
eigenfunction expansion, Equation (1}, yielding:

¢ = 3 CnAS(2)0u(z) AL(z) Au(z), (18)

¢ = > Culz) Al(x) A(), (19)
where, |

C'(z) = Cpon(z)Au(z). (20}

The expression for C’.(x} can usually be significantly simplified which eliminates the ne-
cessity to compute the extremely small and extremely large values for o.(z) and An (x),
respectively as n — oo,

The three factors in each term of Equation (19) are well-behaved for large values of
n which makes this procedure convenient for computing a slowly convergent eigenfunction
expansion.

It is common practice to extract a factor from functions that grow without bound. The
main contribution of this paper is the computation procedure for the auxiliary functions
which is presented in the next section.

2.2.1 Computation of the Auxiliary Functions by Recursion

The direction of recursive stability of an auxiliary function is the same as the function
from which it was derived, therefore Miller’s algorithm can also be applied to auxiliary
functions. We begin by assuming that the recursion relationship for the original function
(Equation (4)) is known. If we are trying to calculate AL (z), the auxiliary function for Ln(z),
then we simply substitute Equation (17) into the recursion relationship, Equation (4).

An(z) An(z) A{;(ﬂr) + Bn(2) Anga(z) A«:[{+1(37) + Cu(z) Ap-a() ATLL‘—I("E) =0 (21)

In this form, the recursion relationship would experience the same overflow and under-
flow difficulties as the original function (due to the asymptotic factors An(2), Ant1(z} and
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Incident P
Plane Wave

PEC

Figure 2: Plane wave incident upon PEC circular cylinder.

Ap_1(x}). Tt can, and must, be analytically simplified at this stage to avoid taking differ-
ences of very large numbers which is a computational faux pas. Section 3 illustrates this
procedure by presenting an example which calculates the planc wave scattering by a circular
cylinder.

3 Example: Scattering by a PEC Circular Cylinder

In this section we are presenting an example that applics the general technique outlined in
this paper to the specific problem of determining the total (incident + scattered) z-directed
electric field when a TM, plane wave is incident upon a perfect eleetric conducting (PEC)
circular cylinder which has its axis along the z-axis. The incident field is given by:

B = Ee ™ = Be ™% = By Yo 7, (kp) ™, (22)
n——oo
where Ey is the complex amplitude and the coordinates z, p and ¢ are shown in Figure 2.
The total z-directed field is given by [Harrington, 1961):

e Julka
Ez = ED Z 7 Jn(kp) (—)

— H3 (kpy| ™ 23
= 00 Hﬁz)(ka) (p) ( )

It is possible to convert this series into a more quickly converging representation, however,
this will not be done since the goal of this section is to illustrate the recursive technique
outlined in this paper by a simple example. An additional numerical difficulty which will
not be addressed in detail here, with the form of Equation {23) is that when computing
the total fields near the cylinder, p = ¢, there can be a loss of significant digits. This
may be overcome by computing the cross product directly by means of recursion relations
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[Abramowitz and Stegun, 1972, p. 361]. Note that this problem does not occur when com-
puting the scattered fields alone.

Using the relationship that Z,, any integer order Bessel function (J,, Yn, HiV, H®),
satisfies:

Z_, = (-1)*Z,, (24)
we can express the total fields as:

Jn(ka)

E, = E men i~ | T (kp) — = H (kp)| cos(ne), 25
3 ™ ) S 5p) | cosd) (25)
where,
1 3 n=0,
€n = (26)
2 ; n#0

Notice that the second term in the brackets exhibits the behavior that is discussed in this
paper, namely that each individual factor grows without bound (#£{?), or approaches zero
(J,.), as n increases. The asymptotic behavior of the Bessel functions of the first and second
kind are given by [Abramowitz and Stegun, 1972, p. 365]:

1 er\™
Ja(z) ~ ——= () =0nlz), — 0, 27
@ ~ Zo=(5) =one) m—oo (27)
and,
Ya(z) —Mi(ﬁ)_" n— 00 (28)
" ™™ \2n) ' ’
and since,
HP(2) = Ju(z) - Ya(z). (29)
Then,
2 fex\™"
H® ~ 7 —(—) = — 0.
» (@)~ dy— 5 An(z), n—-x (30)
So then the auxiliary functions are defined by:
1 er\"
W(z) = — ] Al =1,2,3,...,00, 31
M) = =(5r) M), n=123. .0 3y
and,
2 fex\NT"™ 9
(2 = = (=) AFY(x = NS
HP@) = gy (o)A@, n=123.. .0 (32)
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All Bessel functions satisfy the same recursion relationship [Abramowitz and Stegun, 1972,
p. 365]:

Znor) + Znsa(z) = %”z,,(m). (33)

By comparing the asymptotic forms of J,(z) and ¥,,(z), J.{(z) is downward stable and Y, (x)
is upward stable [Abramowitz and Stegun, 1972, p. XIII]. Since the Iankel function consists
of both J,.(z) and Y, (x) and they differ in their direction of recursive stability, it is necessary
to decompose the Hankel function to determine Jn{z) and Y,(z) separately.

The definitions for the auxiliary functions (Equations (31} and (32)) are indeterminate
for n = 0. For this reason, we will extract the n = 0 term of Equation (25} and begin the
sum from n = 1.

E, = FE [Jo(kp)—%yéz’(kp)]
v28, 3T (92) az(he) — (o) 280D k)| costo. 31

Calculation of A’(z)

The recursion relation which defines A;(x) is found by substituting Equation (31} into
Equation (33). After algebraic simplification, the following form of the recursion relation is
obtained:

n+1/2 LBLL‘ 2 n+1/2
a0 = o(2) " A - 20 (25) T A )
where e is the base of the natural logarithm. This is in a form suitable for downward
recursion.

We will apply Miller’s algorithm to determine a sequence denoted by AJ(x) which is
proportional to the desired AJ{z) sequence. We choose N to be larger than the maximum
number of terms expected to be summed by M. Also, let:

Al(x) = 1, (36)
and,
EJJVH(:E) = 0 (37)

Use the recursion relationship (Equation (35)) to determine { A/ (z)} forn =1,2,3,... N—1.
{AZ(x)} is a sequence proportional to the desired sequence {A7(z)}. There are many ways
to normalize the sequence {A;/(z)}. Here we will use Equation (31) to determine A{(x)
which will then be compared to A}(z) to determine the constant of proportionality, 3.

er Aj(x)

T oz D) 38)

B
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So then,
(A@)} = %{A”,{(x)}; n=123...N-M (39)

The following table was constructed, using these procedures, to emphasize the favorable
behavior of the magnitude of the auxiliary functions compared to the magnitude of the
Bessel functions. We are showing two arguments of the auxiliary function for a wide range
of orders. This table illustrates the difficulty in computing the Bessel functions directly.
The triple asterisk indicates that this term is larger than 10%®, the largest number our
computer can handle.

n Ja(1) A7 (1) I (5) Az (5)
4.4005 x 10~1 | 0.81157 || —3.2758 x 10~} | —0.12083

2 1.1490 x 107! | 0.88200 || 4.6565 % 1072 | 0.014297

5 24976 x 1074 | 0.94323 2.6114 x 1071 0.31559

20 3.8735 x 10725 | 0.98405 || 2.7703 x 1o~ 0.73798
50 2.9060 x 10~ | 0.99345 || 2.2042 x 1047 0.88306
100 || 8.4318 x 10718% | 0.99670 || 6.2678 x 10119 | 0.93019

200 - 0.99834 || 4.7600 x 10729 | 0.96898
500 * ¥ 0.99927 * % % 0.98737
1000 ¥k k 0.99965 R 0.99367

Calculation of 427 ()

As mentioned previously, the Hankel function, H{#(zx), consists of Bessel functions of
the first and second kind, J,(z) and Y,(z), respectively. J,(z) and Y, (z) differ in their
direction of recursive stability, therefore, they must be computed separately. We note that
as a consequence of Equations (29) and (32):

Jnlz) = —\/;3; (52) " Zm{a” (@) (40)

and,

Ya(z) = —\/% (%) Re{ A" (z)}. (41)

From these relationships, we determine that Zm{A2”(x)} is stable recursing down and
that Re{AZ?(z)} is stable recursing up. Substituting Equation (40) into Equation (33)
yields the following recursion relation in a suitable form for downward recursion.

Im{ Al (@)} = l(2_”)2(“1)“+%zm{A,’:'ff(x)}

e xr n .
(Y (2 g ) (42)
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We can use this recursion relation along with Equation (40) with n = 1 (for normalization),
to apply Miller’s algorithm.

Im{ Al (@)} =~/ 5 h@

The calculation of Re{AX @ (x)} requires two starting values and the recursion relation-
ship since it is upward stable. The two starting values are obtained by substituting n =1
and n = 2 into Equation (41).

(43)

Re{ A (2)} = -5 ¥i(@), (44)
and,
Re{ 45" (@)} = —v7 (Z) Yila) (45)

The recursion relation is obtained by substituting Equation (41) into Equation (33)
yielding the following recursion relationship for Re{AZ? ()} in a suitable form for upward
recursion.

() Rear )
~ (bea)”
(n =27

The following table is presented for a comparison of the Hankel function of the second
kind with its auxiliary function. We arc showing two arguments of the auxiliary function
for a wide range of orders.

Re{A7" (2)}

i

(2 Ref AT ) (16

n 7P () AE® (1) a?(5) AH%(5)

1 {4.4005 + §7.8121) x 10~! | 1.3307 - jO.74960 || (—3.2758 — j1.4786) x 1071 | —1.2594 + §2.7900
2 {0.11490 + j1.6507) x 10° | 1.3511 — 0.0940 {0.46565 — §3.6766) x 1071 | —7.5237 — j0.0529
5 {0.0000 + j2.6041) x 102 1.0831 + 50.0000 {2.6114 + j4.5360) x 1071 5.8970 — 73.3042
20 (0.0000 + 74.1140) x 1022 1.0175 + 70.0000 {0.0000 4- 75.9340) x 108 1.3996 + j0.0000
50 (0.0000 + 72.1911) x 1077 1.0068 } F0.0000 (0.0000 + 72.7888) x 1042 1.1381 + j0.0000
100 || (0.0000 4 73.7753) x 10153 | 1.0034 + j0.0000 {0.0000 4 j5.0819) x 10115 1.0661 + 70,0000
200 * ok k 1.0017 + j0.0000 (0.0000 | 73.3446) x 10292 1.0323 + §0.0000
500 * & X 1.0007 -+ 70.0000 * ok % 1.0128 + 50.0000
1000 ok ox 1.0003 -t 70.0000 - 1.0064 t 70.0000
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4 Conclusion

In this paper we introduce & technique which circumvents the need to compute very large or
very small special functions that commonly appear in eigenfunction expansions. This was
accomplished by introducing a set of well-behaved auxiliary functions which are equal to the
original special function with its asymptotic behavior factored out. When the eigenfunction
expansion is expressed in terms of these auxiliary functions, the summation can be simplified
resulting in well-behaved factors in the sum. The auxiliary functions can be computed via
modified recursion formulas.

This procedure is formally exact since we are not making any approximations — only
substitutions. Typically, when calculating summations of the type addressed here without
the use of the auxiliary functions, at some point in the summation (which needs to be
determined), an asymptotic form is substituted into the expression. The procedure described
herein avoids the need to switch functional representations thereby eliminating the need to
determine the value of the index to implement the asymptotic representation.

In this paper we have restricted our development of the auxiliary functions to the extrac-
tion of the asymptotic form of the function. The procedure is not limited to this asymptotic
extraction. Any functional form that is convenient for the formulation of the problem at
hand can be extracted in a similar manner.
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