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Abstract

We consider a three-dimensional approach based on the
Kirchhoff’s method in order to predict electromagnetic
waves propagation in urban environments. In particular,
we are interested here in the evaluation of the electro-
magnetic field on very large three-dimensional domains
(typically with linear dimensions of the order of hun-
dreds of meters) generated by a high frequency source
(typically of the order of 1GHz which corresponds to a
wavelength of about 30 centimeters). Some numerical
tests and comparisons with experimental measurements
have been done to validate this approach.

1 Introduction

Efficient planning of mobile communication systems is
based on an accurate determination of the coverage re-
gion of the antenna. In urban environments, this can
be quite complicated, since electromagnetic waves are
absorbed, reflected, transmitted and diffracted by build-
ings. The subject of our research activity is the analysis
and development of simulation tools to effectively predict
the propagation of the electromagnetic waves and the
antenna coverage in three-dimensional urban dormains
which have huge dimensions with respect to the wave-
length.

Techniques used to solve this problem in a reason-
ably fast way include ray tracing (Ikegami et al., 1991,
Rossi et al., 1992, Kiirner et al., 1993, Rizk et al., 1994)
and two-dimensional Transmission Line Matrix (TLM)
(Luthi et al., 1996). We propose a three-dimensional ap-
proach based on the Kirchhoff integral method. The
presence of multiple reflections has led to implement
Kirchhoff’s method using an iterative procedure where
each iteration corresponds tc a reflection on a surface.
In addition, a number of approximations have been in-
troduced to limit the computational complexity.
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This approach is validated through numerical com-
parisons with experimental measurements. Further re-
sults related to the convergence and time scaling of the
method as well as its application to determine the an-
tenna coverage in urban environments are presented and
discussed.

2 The vector Kirchhoff integral
relation

In this section we review the theoretical basis of the vec-
tor Kirchhoff integral relation (Jackson, 1975, pages 432-
435).

Suppose that the vector field E has harmomic time
dependence ¢~**'. When the field sources are outside
the volume V, the field E satisfies the vector Helmholtz
wave equation inside V, '

(V2 + kHE(x) =0 (1)

where k = £ and c is the wave propagation velocity. By
applying the divergence theorem

deV = fndo'
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it is easy to see that, when equation (1) is verified, the
following relation is an identity:
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In (3) r = x ~ x’, the point x is inside the volume ¥
bounded by the surface Sy and the unit normal n' is
directed into the volume V.

Equation (3), which is known as the Kirchhoff inte-
gral, expresses the electric field E at a point x inside a
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closed volume V' in terms of the values of the field and
its normal derivative on the boundary surface S5y. By
using Maxwell equations, we can rewrite equation (3) in
terms of the electric and magnetic fields E and B:

E(x) = ﬁsf% [k « (0’ x E) (1 + 1:_1-) (4)
+k(n' x B) —k(n' - E) (1 + F:_r)] dz’

For the Helmholtz equation (1) to be satisfied inside
V', the medium contained in V' must be homogeneous.
Therefore, when we need to evaluate the electrormagnetic
scattering from objects which have a dielectric constant
€ ¥ €, we can identify V' with the free space between
the scatterers. The boundary surface Sy of V is taken
equal to 5 U S, where 5 is the surface of the scattering
objects and S, is the surface “at infinity”. It can be
proven (Jackson, 1975, pages 433-434) that the integral
over S, vanishes; so the integral in (4) can be computed
only over S.

It 1s useful to specialize (4) to a scattering situation
and to exhibit a formal expression for the scattering am-
plitude as an integral of the scattered fields over 5. Since
the scattering objects are supposed to be outside the
volume V', equation (4) holds for the scattered fields
(Es.B,), that is, the total fields (E, B) minus the in-
cident fields (E;, B;) (i.e., the fields generated by ac-
tive sources such as antennas). In equation (4) E(x)
depends explicitly on the outgoing direction of k. The
dependence on the incident direction is implicit in the
scattered fields E and B.

3 Description of the model

The evaluation of the field E through equation (4), re-
quires the knowledge of the fields E; and B; on the sur-
face S.

3.1 A single scatterer

In the absence of knowledge about the correct fields E;
and B, on the surface S, we must make some approxi-
mations.

First, we neglect the field transmitted through the
building. This is equivalent to assuming that the build-
ing 1s an “opaque” object. This assumption is reasonable
at the frequencies we are dealing with as the part of the
wave energy which is not reflected from the surface, is
largely dissipated inside the building. Because the wave-
length is small with respect to the linear dimensions of
the obstacle, the surface S of the building can be divided
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approximately into an illuminated region S; and a shad-
owed one 5;. In the shadowed region the total field on
the surface S; is nearly zero (the object is opaque). We
assume that there the scattered field cn 5, is equal and
opposite to the incident field. In addition, we suppose
that the building’s external walls-are either flat or with a
radius of curvature large with respect to the wavelength.
As aresult, in the illuminated region, Fresnel coefficients
for reflection are used to evaluate the scattered field on
S;. This procedure can be summarized as follows:

s1) the incident fields E; and B; (generated by the an-
tenna) are evaluated on the surface S of the scat-
terer;

s2) the scattered fields E, and B, on § are approxi-
mated as described above;

s3) the scattered fields throughout the space V are com-
puted using the Kirchhoff integral method.

This method gives a good estimate of the scattered
field around an opaque object. If the diffraction effects
on the building wedges are negligible, we can simplify
the above procedure by assuming a “Geometrical Optic-
s” shadow for the incident field, i.e. by assuming that
both the incident and scattered fields are equal to zero
beside the obstacle. When we are dealing with a large
number of scatterers, this approximation can allow a sen-
sible reduction in the computational time, because it re-
duces the number of pair-interactions {only the pairs of
scatterers that “see” each other interact). This aspect
will be discussed in detail in section 4.1. Later on this
paper, we will refer to the first procedure as the “general
procedure” and to the second as the “GOS (Geometrical
Optics Shadow) procedure”.

3.2 More than one scatterer

When dealing with more than one building, the proce-
dure for one scatterer can be extended using an iterative
technique where each iteration corresponds to a reflec-
tion on a surface.

a: Theincident field produced by all the sources is eval-
uated on each building surface S,:

o at the first iteration, the only source is the an-
tenna;

» starting from the second iteration, the sources
of incident field are the antenna and all the sur-
faces which have been illuminated during the
previous iteration. The second contribution is
evaJuated by using the Kirchhoff integral.
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S, receiver

s direct path
——  path involving one reflection
---~  path involving two reflections

Figure 1: Example of source-receiver paths involving up
to two reflections. These paths are accounted for by the
method after two iterations

b: When the incident fields E; and B; are known at
each point of the surface S,, the scattered fields E,
and B, on S, are evaluated as described in section
3.1. At the frequencies considered, the diffraction
fields are small with respect to the Geometrical Op-
tics fields and they can be neglected if the intensity
of incident radiation is low. Therefore, we have cho-
sen to evaluate the scattered fields on S, by using
the “general procedure” when the source of the inci-
dent fields E; and B; is the antenna and the “GOS
procedure” elsewhere. E, and B, will be used in
the first step of the next iteration to compute the
incident field on the other surfaces.

¢: When the electromagnetic fields do not significantly
change from one iteration to the next one, the pro-
cedure ends.

d: At the end of the iterative procedure, we know the
electromagnetic fields on all the involved surfaces
and we can use, once again, the Kirchhoff integral
to evaluate the electromagnetic field throughout the
domain V.

The above procedure is sketched in figure 1 in the case of
two buildings and up to the second iteration. It is seen
that, each iteration is equivalent to include new paths
connecting the source to the recever.

To analyze the convergence of the method, we consider
the configuration described in figure 2. A plane wave
of wavelength A = 6.28 meters and wave vector k =
(0.89,0.42, —0.15), whose projection onto z = 0 is drawn
in the picture, has been taken as the incident field. At
each iteration, the field values are measured at points
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located at a height of 1.8 meters, along the axis shown
in the figure.
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Figure 2: Geometry used to test convergence of the
method. Receivers are located along the dashed line be-
tween the two buildings (all dimensions are given in meters)

At iteration n, the convergence of the method is
checked through the following parameters:

er, = max {|E(K) - B/ (). k=1, N},
i=1,3
er = max {erg,, i=1,3}

where N, is the number of receivers.

Figure 3 reports the values of erf at each iteration.
The lines refer to two different simulations where the
buildings are considered either metallic or built with ma-
terial of dielectric constant ¢ = 4. In the second case,
the convergence is faster because, at each iteration, part
of the incident energy is absorbed by the external walls.

In figure 4 we report the values of two components of
the electromagnetic field, computed in the case of metai-
lic buildings. The convergence of the component E, is
much slower than that of the component E;. This can be
intuitively explained by noting that an y-directed elec-
tric field can be associated to an z-directed wave, which
is reflected between the metallic walls as in a resonat-
ing cavity, while the z-directed electric field, related to
an y-directed wave, is free to leave the system. So we
expect that the y component will keep changing at each
iteration (and further reflection) between the buildings
(i.e. 65 < y < 100) more than outside them, and this
is confirmed by the results of the simulation shown in
figure 4 (bottom).
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Figure 3: Convergence of the method. White dots refer to
perfectly conducting surfaces. Black dots refer to dielectric
surfaces ( € = 4 ). The quantity "maximum variation”,
reported on y axis, is defined as erf, = max {er%__, i =
1,3}, where erg_ is ery = max{|EP(k) — EF (k)| k =
1,N;}, i=1,3 and N, is the number of receivers

4 Computational aspects

In this section we present the main computational fea-
tures of the model.

4.1 Scaling of the computer time with
the dimension of the domain

The model described in section 3 requires, on each sur-
face, the evaluation of the field scattered from the other
surfaces. Thus, at first sight, the computational time
grows as N? with N the number of surface elements and
as D* with D the diameter of the domain. This behavior
is even worse than the one shown by the methods which
require the discretization of the whole space (D?), but,
as we will show, can be easily improved.

Consider the situation described in figure 5. S5 is a
region of the surface on which we need to compute the
field scattered by a region S; of another surface; we can
write

r=ry—x +x"
and .
r= [rg —2rg- (x' —x") +|x' = x”fz] ?
When r is large compared with 2’ and z”, we can rewrite
r using a suitable Taylor expansion:

G O (5)

r=r1rop— -
0

where

|x! — xu[z _ [1‘0 . (xl _ xl/)]z

T =
21'8

+ (8

27"0
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Figure 4: Components E; (top) and E, (bottom) at dif-
ferent iterations in the example shown in figure 2. The
spatial coordinate along the dashed line is reported on the
z axis

Provided that T is negligible, we have:

kT = ik

e—ik-(x'—x”) (7)
Let 4’ and d” be the diameters of the regions S and
5>. To get a quantitative estimate, we impose that the

error on the phase is bounded by Z. Then, looking at
equation (6), we can see that T is negligible when

= (d’+d”)<\/% (8)

which is equivalent to the well-known far field relation.
In this approximation, equation (4) becomes:

d AV
(d+d?)” A
87’0

3 eikrg
ES(X) - -
To

o e *"F(k) (9)
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Figure 5: Scattering geometry

Fk) = jge"""k"" {k(n' x B,) + [k x (n’ x E;)
51

—k(n’ - E,)] (1 + 73;)} dz’  (10)

In equation (10), the integral does not depend on the

coordinate x”' internal to the region Sa. Therefore, when
we decompose the surfaces into regions which are small
compared to their relative distance, we need to evaluate
the integral only once for each region.
Since the area of the surface regions is proportional to 7o
(see equation (8)), with this approximation the computa-
tional time for the evaluation of the interaction between
two surfaces is inversely proportional to their relative
distance ro. Moreover, the probability that one build-
ing Ay “can see another building” Aa (i.e. there aren’t
buildings between A; and Ay) decreases exponentially
with ro. Then, it can be demeonstrated that the compu-
tational time grows as N % with the number N of trans-
parent buildings and linearly with the number of opaque
ones.

In order to check these results, we have performed
some computations on configurations of n? buildings
with n = 2,...,6 illuminated by the field emitted from
an antenna. The buildings have been uniformly distrib-
uted over a square region (n per direction) and the an-
tenma has been located at the center of the layout. The
results are shown in figure 6 where N = n? represents
the number of buildings and the relative computational
time is defined as the ratio Ti /T4 between the compu-
tational time required for N buildings and that required
for 4 buildings. We can see that the scaling of time 1s
similar to N# for a small number of buildings and to N
further.

4.2 Reflections on the ground

In the simulation of the radioelectric propagation in ur-
ban areas, a numerical treatment of the ground using
the Kirchhoff integral is, from a computational point of
Vview, expensive.

‘We assume therefore that the reflection from the
ground can be computed by Geometrical Optics. This
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N
Figure 6: Scaling of the relative time Ty /T4 for a regular
distribution of /N x +/N buildings. Black diamonds corre-
spond to times measured for the Kirchhoff integral method

assumption cannot be done for reflection from the build-
ings’ walls. We refer to figure 7 for a brief explanation.
The effects of diffraction, which are neglected by GO,
are noticeable only near the light-shadow boundaries of
the incident and reflected field. These boundaries exist
only when we deal with reflections from the wall. For
ground reflections, the incident and reflected fields have
no discontinuities.

For the ground-wall double reflection, the discontinu-
ity is inside the domain (see figure 8), but is partially
compensated by the discontinuity due to the wall-ground
double reflection. Since the wall and the ground form a
90 degree angle, the two discontinuities coincide, and it
can be seen that the values of the two contributions are
similar.

We notice that in the case of perfectly conducting
walls and ground, the effects of diffraction are nonex-
istent. In fact the two surfaces give only three dis-
tinct contributions, two corresponding to single reflec-
tions on the walls, one corresponding to a double reflec-
tion. Fach contribution can be attributed to a different
image source and is accounted for by GO.

In figure 9, points A and B represent a source and
a receiver respectively. The source can be either the
antenna or any point of a scattering surface while the
receiver can be either any point of a different scattering
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Figure 7: Light-shadow boundaries of the incident and re-
flected field

Ground-wall Incident feld

reflection

Figure 8: Geometrical description of the ground-wall dou-
ble reflection paths

surface or any point where we want to compute the field
value.

A

ground

Figure 9: Geometrical scheme to illustrate ground reflec-
tions treatment

For each direct path r from A to B, there is another
path r; and r» which involves one reflection on the
ground at the point C. The contribution of the refiec-
tion in C to the field value in B is computed considering
the lengths r1, 7o and by using Fresnel coefficients.

These considerations have been validated by imple-
menting both the explicit (evaluation of the Kirchhoff
integral} and implicit (Geometrical Optics) treatments
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of reflections on the ground and comparing the results
on a test configuration. The layout (position of buildings
and observation axis) is schematically described in figure
2. The input data of the simulation are equal to those
given in section 3, with ¢ = 4. The implicit treatment of
ground reflections brings to numerical results which are
similar to those obtained with an explicit cne (see figure
10) and it allows, at the same time, a sensible reduc-

~ tion in both the computational time and storage mem-

ory. Moreover, it avoids the generation at the ground
boundary, of fictitious diffraction terms which decrease
the computed field when ground reflections are explicitly
considered.

1.0

Infensily

1200

Figure 10: Component E; of the electromagnetic field.
The continuous line represents the field obtained by explic-
itly computing ground reflections with the Kirchhoff inte-
gral; the dashed line represents the field obtained by implicit
( purely GO ) ground treatment

5 Results

In sections 3 and 4, we have presented some results
related to the convergence and time complexity of the
method described here. The validation of the approach
described in this paper is done by comparing the simu-
lation outcome with a number of experimental measure-
ments. In this section, we are going to present the results
of these comparisons.

5.1 Radioelectric coverage in an urban

environment

We give here the results of a numerical simulation of the
propagation of the field emitted by an antenna through-
out an urban environment. In figure 11, the white blocks
represent the buildings of a real city and their parameters
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(dielectric constant e, height hs, etc.) have been chosen
uniformly over the layout because of the lack of detailed
measurements. In particular, we have chosen € = 4 and
hy = 10 meters. The frequency of the field emitted by
the source (antenna with a nonisotropic radiation pat-
tern) is 1.8 GHz which corresponds to 2 wavelength of
16.7 centimeters. Input power is 250 mW. The source is
located at a height of 4.5 meters and the electric field 1s
computed at a height of 1.6 meters.

The cross in the center of the figure marks the position
of the source and the gray scale indicates the simulated
field power, decreasing from white to black. For an area
of about 300 meters diameter, the whole simulation has
taken 24 hours on a RISC/6000 560 IBM.

Figure 11: Example of the power emitted by an anisotropic
antenna, obtained by the Kirchhoff integral method.

5.2 Comparison with experimental mea-
surements

Comparisons with experimental measurements in realis-
tic conditions are quite difficult because of the absence of
accurate data on the computational domain. The dielec-
tric constant of the involved materials and the height of
the buildings are not known. Moreover, the map of the
town is available with a precision of one meter; therefore,
the direction error for shorter walls can be of the order
of about ten degrees which doubles when we consider the
direction of the reflected field. Further, due to interfer-
ence phenomena, the field can vary considerably within
one meter. Finally, no information is available about

the presence of objects other than buildings; a parked
car can easily intercept the ground-reflected field.

In these conditions, the computed power may easily
differ by 10 to 20 dbm from the measured one and point-
to-point comparisons cannot be used to validate or in-
validate the code. On the other hand, the errors are
fairly localized and the code can be still used with some
confidence to estimate the coverage areas.

In the following figures, the cross marks the position
of the antenna, while the numbered dots indicate the
positions of the points where measurements have been
taken. The light gray defines the area where the com-
puted power is above threshold for both Geometrical Op-
tics and Kirchhoff’s method. The dark gray indicates the
area where the power values are above threshold only
for Kirchhoff’s method. The area where the computed
power values are below threshold is represented in black.
The input data for both simulations (buildings’ parame-
ters, source’s frequency, area’s diameter) are equal to
those used in section 5.1. Experimental data were ob-
tained by a DECT system using propagation tester Sym-
bionics SP935.

In figure 12, the computed coverage area of the an-
tenna is represented for a threshold power of -85 dbm. It
can be seen that the coverage area evaluated with Geo-
metrical Optics is about 20% less than obtained with
Kirchhoff’s method. Moreover, two of the points consid-
ered ({5,7}) lie outside it, while all the measured values
and those evaluated with Kirchhoff’s method are above
threshold. Figure 13 has been obtained by raising the
threshold up to -70 dbm. The measured values fall under
the threshold in four points {1,2, 3,4} and three of them
are outside or very close to the boundaries of Kirchhof-
{’s coverage area. The only evident discrepancy concerns
point {4} whose measured value is under the threshold
while both Geometrical Optics and Kirchhoff’s calcula-
tions locate it inside the illuminated region. Therefore,
on the one hand, Kirchhoff’s estimate of the coverage
area clearly improves the Geometrical Optics one; on
the other hand, due to the inaccuracy of the input data,
the reliability of the results is limited and it 1s advisable
to use a fairly large margin of safety.

6 Conclusions

The starting point for the planning and maintenance of
any mobile communication network is based on a pre-
diction of the radio wave attenuation around the source
(antenna) in the layout of the buildings. In this paper
we have proposed an iterative procedure based on the
Kirchhoff integral method. Results have shown that this
method is well suited to solve this problem and offers
promising prospects of development in this field. The
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Figure 12: The coverage region of the antenna for a thresh-
old power of -85 dbm. The light gray area defines the zone
where both Geometrical Optics and Kirchhoff's method
predict a value for the field power above threshold. The
dark gray area corresponds to the zone where only the value
predicted by Kirchhoff's method is above threshold. The
black area defines the zone where both Geometrical Op-
tics and Kirchhoff's method predict values below threshold.
The antenna location is indicated by the cross, while the
numbered dots indicate the location of receivers for exper-
imental measurements

model is currently under revision to improve its time
requirements (Pisani, 1997).
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